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Chapter 1

Planificació i contribucions d’aquest
PFC

Aquesta memòria és el resultat d’un projecte de fi de carrera per a la Facultat d’Informàtica
de Barcelona, de la Universitat Politècnica de Catalunya. És un projecte de recerca l’objectiu
del qual és desenvolupar algorismes que permetin solucionar el problema de la seqüenciació
d’ADN per hibridació d’una forma més eficaç que les que s’han proposat fins ara.

En aquest caṕıtol, primer explicarem breument l’estructura de la memòria. A continuació,
exposarem la planificació inicial del projecte, i comentarem les variacions que hi ha hagut.
Detallarem el cost econòmic del projecte i, finalment, exposarem les contribucions cient́ıfiques
que aporta.

1.1 Estructura de la memòria

La memòria es composa de tres parts. La primera, que conté el gruix més important del
treball és el desenvolupament del projecte en śı. Hi expliquem el problema que volem resoldre
i com el resoldrem, i fem un estudi complet de diferents tàctiques per tractar-lo des d’un punt
de vista algoŕısmic. Als paràgrafs següents introdüım, amb més detall, el contingut de cada
caṕıtol. La segona part de la memòria consisteix en un annex amb tot de resultats dels nostres
algorismes. La tercera part és un CD-Rom que conté el codi font dels algorismes explicats a
la memòria i la bateria d’instàncies del problema que hem utilitzat com a joc de proves en els
experiments realitzats amb els nostres algorismes.

Excepte aquest caṕıtol introductori, la resta de la memòria està redactada en anglès. El
marcat caràcter de recerca d’aquest projecte, aix́ı com la importància de transmetre a la co-
munitat cient́ıfica els coneixements i resultats que s’han pogut extreure dels estudis realitzats,
ens han fet triar aquesta llengua per escriure la part més cient́ıfica de la memòria. Això també
ens ha permès optimitzar l’escriptura d’aquesta memòria amb la escriptura simultània de dos
articles de recerca.

Caṕıtol 2

En el segon caṕıtol fem una introducció al problema de la seqüenciació per hibridació (SBH),
que serà el problema que tractarem en aquest projecte, aix́ı com a les eines algoŕısmiques
que farem servir per tractar-lo. Primer fem una descripció de l’oŕıgen i fonaments biològics
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del problema i, posteriorment, el definim formalment i el formulem com a problema (com-
putacional) d’optimització. Explicarem algunes de les tècniques que s’utilitzen per tractar
problemes d’optimització, i finalment farem una breu descripció bibliogràfica de les aproxi-
macions algoŕısmiques existents que han intentat tractar el problema de SBH.

Caṕıtol 3

Aix́ı com en el caṕıtol anterior hem explicat el problema a resoldre, en aquest caṕıtol pro-
posarem heuŕıstiques constructives per tractar-lo i, a continuació, farem estudis experimentals
per estudiar la qualitat d’aquestes heuŕıstiques.

Caṕıtol 4

En aquest caṕıtol explicarem en detall els fonaments de la metaheuŕıstica Ant Colony Op-
timization (ACO), que permet optimitzar problemes combinatòrics basant-se en el compor-
tament biològic de les colònies de formigues que trobem a la natura. Començarem expli-
cant els fonaments biològics d’aquesta metaheuŕıstica, que es basen en el rastre que deixen
les formigues mentre caminen i que les permet retornar al formiguer i alhora comunicar a
d’altres formigues del mateix formiguer on trobar menjar. De manera natural, aquest com-
portament local permet establir camins mı́nims entre el formiguer i les fonts de menjar,
optimitzant-ne aix́ı aquesta activitat. Veurem que aquest comportament natural es pot de-
scriure algoŕısmicament i per tant transformar en codi que podem executar. El caṕıtol es
tanca amb la descripció d’algunes de les variants més importants de la metaheuŕıstica ACO.

Caṕıtol 5

En el caṕıtol 2 hem explicat el problema i en el 3 hem creat creant uns primers algoŕısmes; en
el caṕıtol 4 hem explicat la meta-heuŕıstica ACO. En aquest caṕıtol farem una explicació molt
detallada de com hem aplicat ACO en el problema de seqüenciació d’ADN per hibrididació.
Primer presentarem dos algorismes basats en dues variacions de l’ACO original (MMAS i
ACS). A continuació, introduirem un entorn algoŕısmic multinivell que podrem aplicar als
algorismes ACO descrits anteriorment per manipular les instàncies inicials.

Caṕıtol 6

En la primera part del caṕıtol 6, farem proves experimentals sobre els algorismes ACO descrits
en el caṕıtol anterior, per tal de fixar el valor dels paràmetres que regulen el comportament
de l’algorisme. Un cop decidits quins són els millors valors pels paràmetres, analitzarem
experimentalment d’una forma exhaustiva el comportament dels algorismes proposats, i farem
un estudi comparatiu detallat dels resultats.

Caṕıtol 7

En aquest darrer caṕıtol, explicarem breument les conclusions que hem extret del treball
descrit en els caṕıtols anteriors.
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1.2 Planificació i cost de la feina

La idea inicial del projecte va nèixer a començament del curs 2005–2006, a partir d’unes
quantes propostes que em van fer els meus directors, en Christian Blum i la Maria Blesa.
Entre les opcions de problemes d’optimització a tractar que em van proposar, vaig decidir
escollir-ne el SBH per diverses raons; les principals foren, per una banda, la seva simplicitat
de descripció, la relació clara amb el món real, i d’altra banda la possible aplicabilitat dels
resultats que es poguessin obtenir.

El primer quadrimestre del curs 2005–2006 va servir per escollir el problema a tractar i
per concretar-ne els objectius i el procediment a seguir en el seu estudi. Just en començar el
segon quadrimestre, vam plantejar una planificació orientativa de la feina a fer fins al juny.
El gruix del treball d’aquest projecte s’ha dut a terme en aquest segon quadrimestre.

En tots els estadis de la realització del projecte, s’han realitzat nombroses reunions
(pràcticament setmanals) amb els directors per debatre i decidir diferents aspectes del tre-
ball. Aquesta freqüència de contactes s’ha intensificat encara més cap al final del projecte.
D’aquesta manera, he estat molt ben guiat, de cara a aconseguir els objectius marcats.

Les Taules 1.1 i 1.2 detallen les principals tasques realitzades des de febrer del present any
fins al moment d’enquadernació d’aquesta memòria.

La realització de les tasques inicialment planificades, com s’especifica a la taules 1.1 i 1.2,
ha patit lleugeres modificacions. Com ja hem dit anteriorment, el projecte va començar a
prendre forma en el primer quatrimestre del curs 2005-2006. Aquesta posada en marxa va
ser lenta, per les dificultats que hi va haver a l’hora de trobar un problema adient, i per la
poca disponibilitat horària. Per aquesta raó, el treball efectiu en aquest projecte va començar
realment a partir de Febrer; és per això, que la planificació de les tasques comença a partir
d’aquest mes.

Cost econòmic del projecte

El cost econòmic d’aquest projecte no és gaire alt. Calcular-ho, però, no és fàcil, ja que
en un projecte de recerca és dif́ıcil posar preu al temps invertit en pensar, provar coses que
després no funcionen i no s’inclouen al producte final, el temps invertit en llegir bibliografia,
en formació autodidàctica d’eines que es van necessitant sobre la marxa, etc.

Per obtenir un cost aproximat d’aquest projecte, ens hem basat en el sou d’un becari FPI
del ministeri d’educació i ciència. Actualment, aquest tipus de becari predoctoral té un sou
brut de 1100 e. Segons això, si considerem que per realitzar aquest treball s’hi requereixen 5
mesos a dedicació completa, el cost de la dedicació humana requerida ascendeix a 5500 e.

En aquest cost de 5500 ehem d’afegir el cost del material i recursos necessaris. Soposant
que es disposa d’un lloc f́ısic on treballar (és a dir, que no comptarem despeses de mobiliari ni
de lloguer d’espai, ni d’utilització d’energia elèctrica, ni de material de papereria), es requereix
almenys un ordinador personal per al desenvolupament d’aquest projecte. Això afegeix uns
1500 eal presupost necessari per a la feina humana.

Aix́ı doncs, el cost aproximat d’aquest projecte seria d’uns 5500 e, si només es comptabil-
itza el treball humà, o seria d’uns 7000 e), si s’hagués d’incloure la compra d’un computador.

Òbviament, considerar només l’utilització d’una màquina és la configuració de sistema més
simple. Si, tal i com hem fet en el projecte, en lloc d’utilitzar només una màquina volguéssim
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fer servir un cluster de computadors, llavors el cost del projecte s’incrementaria molt. Només
per tenir una idea del cost que suposaria això, el cluster nozomi del departament de LSI que
hem fet servir en els nostres experiments, va costar al voltant de 15000 eel passat any 2005.

1.3 Contribucions d’aquest PFC

En el món cient́ıfic actual, el pes que està tenint la genètica en els nous avanços mèdics és
molt gran i això fa que tots els problemes relacionats amb el tractament d’ADN adquireixin
una gran importància. La seqüenciació d’ADN per hibridització no n’és una excepció.

Val a senyalar la importància dels resultats obtinguts mitjançant les heuŕıstiques construc-
tives proposades, que superen amb escreix les que hi ha descrites en la bibliografia actual.
Volem remarcar que la descripció i el testeig de les heuŕıstiques seran publicades en el congrés
WABI 2006, 6th Workshop on Algorithms in Bioinformatics, a Zurich. Les actes del congrés
WABI 2006 seran publicades per l’editorial Springer-Verlag, sota les seves conegudes sèries
Lecture Notes in Computer Science (LNCS).

S’han de remarcar també en els resultats obtinguts per les heuŕıstiques ACO. Tot i que
aquestes heuŕıstiques no aconsegueixen superar la millor heuŕıstica proposada, aconsegueixen
igualar-la. Remarquem que la proposta dels diferents algorismes basats en ACO que hem
proposat ha estat enviada en forma d’article al congrés HM 2006, 3rd International Workshop
on Hybrid Metaheuristics, a Gran Canària, i a data d’avui, quan escric aquesta memòria,
encara està pendent d’acceptació.

A nivell més personal, m’agradaria dir que en fer aquest projecte he pogut aprendre moltes
coses. La primera, i la més important: he après la metodologia que s’ha de seguir per desen-
volupar projectes d’investigació i en particular he aprés, com desenvolupar metaheuŕıstiques
per tractar problemes d’optimització. En el mateix sentit, m’he familiaritzat amb la lectura
de treballs cient́ıfics (en anglès), i he adquirit l’hàbit de la reflecció posterior a la lectura.
Voldria remarcar que, en aquest procés, he après a ser cŕıtic amb els treballs publicats, cosa
que m’ha fet ser el màxim de rigurós a l’hora d’exposar els meus resultats. Totes aquestes
coses no vaig tenir l’oportunitat d’aprendre-les amb les assignatures que conformen la carrera.

D’altra banda, he adquirit coneixements sobre la utilització d’eines que em poden ser molt
útils de cara al futur, començant per un domini del llenguatge de programació C++ i de la
seva llibreria STL. A l’hora de redactar de la memòria, he hagut d’aprendre LATEX, per tal
d’editar textos i crear imatges, i a fer servir els programes de distribució lliure Gnuplot i R per
a tractar estad́ısticament i representar gràficament els resultats. També he millorat els meus
coneixements del llenguatge Python, que he usat per desenvolupar scripts per al tractament i
automàtic dels resultats. Degut que els algorismes han estat executats en un cluster (nozomi)
del departament de LSI de la UPC, he hagut d’aprendre a executar programes en una màquina
remota mitjançant els coneixements necessaris del sistema operatiu Linux.

Finalment, el fet de redactar la memòria en anglès m’ha fet millorar la meva expresió en
aquesta llengua. Inicialment va ser força dif́ıcil, però a mesura que avançava l’escriptura de la
memòria, la meva redacció ha anat millorant. En aquest sentit, cal destacar que, degut a que
paral·lelament a la memòria s’han escrit articles per conferències, s’han fet moltes correccions
sobre la redacció.
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Temps planificat Tasca

Febrer 2006 Familiarització amb el problema a tractar. Cerca bibliogràfica
i lectura d’aquesta bibliografia que tracta el problema. Lectura
dels treballs existents en aplicació de metaheuŕıstiques al problema.
Paral·lelament, lectura de textos bàsics en optimització amb colònies
de formigues (que es preveu utilitzar al final). Es decideix el conjunt
d’instàncies que servirà de joc de proves dels algorismes.

Març 2006 Primeres propostes d’heuŕıstiques per resoldre de manera aproximada
el problema. S’en proposen sis, de les quals només s’inclouen en
aquest treball quatre (LAG, SH, FB-LAG i FB-SH). Les altres dues
es descarten pel seu mal funcionament sobre les instàncies que es
proven. Es realitzen experiments exhaustius per testejar la qualitat i
el comportament d’aquestes heuŕıstiques proposades. Paral·lelament
es comença a escriure el caṕıtol introductori de la memòria. Això
suposa haver de familiaritzar-se amb LATEX, un llenguatge per pro-
duir/processar text desconeguda per mi.

Table 1.1: Distribució de tasques per l’hivern 2005–2006
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Temps planificat Tasca

Abril 2006 Es proposen tres noves heuŕıstiques (SM, HSM i S-HSM) que sem-
blen inicialment molt prometedores. Es proven diverses variacions
d’aquestes que no resulten en millores respecte a les tres mencionades.
Es comencen a realitzar experiments més exhaustius per determinar
la qualitat i comportament d’aquestes heuŕıstiques, i comparar-les
amb les altres heuŕıstiques proposades. Els experiments ens permeten
decidir quines heuŕıstiques utilitzar en la nostra aproximació al prob-
lema i incloure en aquesta memòria. El tractament de les dades i la
creació de gràfiques fa que m’hagi de familiaritzar amb els programes
Gnuplot i R, que permeten la creació de gràfiques i el tractament es-
tad́ıstic de les dades. Es comença a redactar el caṕıtol de descripció
de totes les heuŕıstiques. Per començar amb les metaheuŕıstiques,
es reimplementa una de les existents a la bibliografia (un greedy ran-
domized adaptive search procedure o GRASP). Es troba que els autors
fan trampa en el seu article i, com que implementant l’algorisme ad-
equadament, els resultats no són bons respecte a les heuŕıstiques, es
descarta aquesta aproximació.

Maig 2006 Es realitzen les primeres propostes per aplicar metaheuŕıstiques
basades en colònies de formigues. La dificultat de programar
l’algorisme allarga una mica aquest peŕıode. Finalment, es proposa
un primer algorisme (el MMAS) basat en colònies de formigues
per tractar el problema. Es descobreix que, curiosament, és im-
portant que una part de la colònia de formigues intenti completar
la seqüenciació d’esquerra a dreta i una altra part de dreta a es-
querra. Es proposa també una segona metaheuŕıstica pel problema
(el ACS) basada en formigues. La forma de procedir d’aquest últim
és diferent a l’anterior, ja que són variants diferents del que es coneix
com ant colony optimization o ACO. Es fan alguns experiments ini-
cials. S’escriu un caṕıtol de la memòria introdüınt ACO i es comença
l’escriptura de la descripció dels algorismes proposats.

Juny 2006 Es proposa un nou algorisme basat en ACO que incorpora la idea de
resolució del problema a diferents nivells, mitjançant la compressió
(o reducció) del problema, la resolució d’un problema de menor talla,
i la posterior extensió d’aquesta solució al nivell del problema inicial.
D’això se’n diu un entorn algoŕısmic multinivell. Es fan experiments
exhaustius i detallats per estudiar-ne el comportament i qualitat de
solucions dels algorismes dissenyats al maig i d’aquest últim algorisme
basat en resolució per nivells. S’acaba la redacció de la memòria. La
segona quinzena del mes i els 4 primers dies de juliol es dedicaran a
fer la presentació.

Table 1.2: Distribució de tasques per a la primavera 2006



Chapter 2

Introduction: the problem and the
existing approaches

In this chapter we first present the problem that will be studied in this document, introduc-
ing both practical and computational aspects. Afterwards we present the state of the art
algorithms to tackle the problem.

2.1 The biological point of view

Deoxyribonucleic acid (DNA) is a molecule that contains the genetic instructions for the
biological development of all cellular forms of life. Each DNA molecule consists of two (com-
plementary) sequences of four different nucleotide bases, namely adenine (A), cytosine (C),
guanine (G), and thymine (T). In mathematical terms each of these sequences can be rep-
resented as a word from the alphabet {A,C,G, T}. One of the most important problems in
computational biology consists in determining the exact structure of a DNA molecule, called
DNA sequencing. This is not an easy task, because the nucleotide base sequence of a DNA
molecule (henceforth also called DNA strands) are usually too large to be read in one piece.
In 1977, 24 years after the discovery of DNA, two separate methods for DNA sequencing were
developed: the chain termination method and the chemical degradation method. Later, in the
late 1980’s, an alternative and much faster method called DNA sequencing by hybridization
was developed (see [1, 28, 22]).

DNA sequencing by hybridization works roughly as follows. The first phase of the method
consists of a chemical experiment which requires a so-called DNA array. A DNA array is a
two-dimensional grid whose cells typically contain all possible DNA strands—called probes—
of equal length l. The set of all probes in a DNA array is denominated a library. For example,
consider a DNA array of all possible probes of length l = 3:

GGT TGA GCG CTA AAT CCT CTC TTC

GTC GTG TTG GGC CGA TTT TCA ATC

GCT AGC GGG CCA TAT CGG TAG AAG

GAA GGA CGT ACG CTG TGT TAA ATT

TCT GAT CAC CAT CAA ACC ATG GTT

CGC GCC AGG CTT ATA TCC TGC GTA

AGA AAC TTA TGG TCG AGT CAG GAC

CCG GCA CCC AAA ACA GAG ACT TAC

13
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GGT TGA GCG CTA AAT CCT CTC TTC

GTC GTG TTG GGC CGA TTT TCA ATC

GCT AGC GGG CCA TAT CGG TAG AAG

GAA GGA CGT ACG CTG TGT TAA ATT

TCT GAT CAC CAT CAA ACC ATG GTT

CGC GCC AGG CTT ATA TCC TGC GTA

AGA AAC TTA TGG TCG AGT CAG GAC

CCG GCA CCC AAA ACA GAG ACT TAC

Figure 2.1: Perfect hybridization experiment (i.e, free of errors) involving the target sequence
ACTGACTC and all probes of size l = 3

After the generation of the DNA array, the chemical experiment is started. It consists
of bringing together the DNA array with many copies of the DNA sequence to be read, also
called the DNA target sequence. Hereby, the target sequence might react with a probe on the
DNA array if and only if the probe is a subsequence of the target sequence. Such a reaction
is called hybridization. After the experiment, the DNA array allows the identification of the
probes that reacted with target sequences. This subset of probes is called the spectrum.

An illustration of the hybridization experiment involving the target sequence ACTGACTC
and a library of length l = 3 is depicted in Figure 2.1. The highlighted cells are those
corresponding to the spectrum (i.e., which have reacted during the hybridization experiment).

The second phase of the sequencing by hybridization technique consists in using the spec-
trum to determine the unknown DNA target sequence. The reconstruction of the original
sequence consists of finding an order of the spectrum elements in which each pair of neigh-
boring elements overlaps on l− 1 letters (i.e., the last l− 1 letters of each probe coincide with
the first l − 1 letters of the next).

However, the hybridization experiment usually produces errors in the spectrum. There
are two types of errors:

1. Negative errors: Some probes that should be in the spectrum (because they appear in
the target sequence) do not appear in the spectrum. A particular type of negative error
is caused by the multiple existence of a probe in the target sequence. This cannot be
detected by the hybridization experiment (i.e., the library can only detect the presence
of oligonucleotides, not their amount). Such a probe will appear at most once in the
spectrum. In the reconstruction, the presence of negative errors forces overlapping
between some neighboring oligonucleotides in a sequence on fewer than l − 1 letters.

2. Positive errors: A probe of the spectrum that does not appear in the target sequence
is called a positive error. In the second phase, the presence of positive errors forces
some oligonucleotides to be rejected during the reconstruction process.

2.2 The computational problem

The computational part of the hybridization experiment is to achieve the reconstruction of
the target sequence with the oligonucleotides obtained in the first phase (i.e., the spectrum).
In the case that the obtained spectrum is perfect (that is, free of errors), the original sequence
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can be reconstructed in polynomial time with an algorithm proposed by Pevzner in [31]. The
existence of errors in the spectrum results in strongly NP-hard combinatorial problems, as
shown by B lażewicz and Kasprzak in [7].

In order to solve the computational part of DNA sequencing by hybridization, one usually
solves an optimization problem of which the optimal solutions can be shown to have a high
probability to resemble the target sequence. In this work we consider the optimization problem
that was introduced as a model for DNA sequencing by hybridization by B lażewicz et al. in [3].

2.2.1 The model

Instance: A set S (spectrum) of words of equal length l over the alphabet {A,C,G,T} (i.e.,
S = {{A,C,G, T}l}∗) and the length n of the original DNA target sequence.
Goal : To find a sequence of length ≤ n containing the maximal number of elements of S.

The mathematical-programming formulation of the problem is given below.

Maximize
z
∑

i=1

z
∑

j=1

bij + 1 (2.1)

subject to

z
∑
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bik ≤ 1, k = 1, . . . , z (2.2)
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bkj



 < |S′|, ∀S′ ⊂ S, S′ 6= ∅ (2.5)

z
∑

i=1

z
∑

j=1

wijbij ≤ n− l (2.6)

where:

S is the spectrum,

si ∈ S is an element of the spectrum,

z = |S| is the cardinality of the spectrum,

n is the length of the original DNA target sequence,

l is the length of each spectrum element,

bij is a binary variable equal to 1 if the element si is the immediate predecessor of the element
sj in a solution; otherwise it is equal to 0,
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wij = is the cost of a connection of element si with element sj equal to the difference between
l and a number of letters of the common part of si and sj coming from their maximal
overlapping.

The objective function (2.1) counts the number of spectrum elements composing the solution.
Inequalities (2.2) and (2.3) guarantee that every element of the spectrum will be joined in
the solution with at most one element from the right side, respectively one element from
the left side. The addition of equation (2.4) ensures that exactly two elements connected
from only one side with other elements will appear in the solution. These elements will
constitute the beginning and the end of the reconstructed DNA target sequence. Supplying
the above formulation with (2.5) allows to eliminate the solutions including subcycles of
elements. According to (2.6) the length of the reconstructed sequence cannot exceed the
length of the DNA target sequence (the length can be shorter, for example, in case of negative
errors appearing at the end of the sequence).

Deficiencies of the model

The model described in this section is currently the only one that models the computational
part of the sequencing by hybridization problem. However we have found that this model has
some deficiencies when representing the original problem. In the following we expose—without
a formal demonstration—two situations where the model does not correspond correctly to the
original problem. However, due to the focus of this document on practical results we will not
propose alternative models to represent the problem in a better way. However we encourage
further studies.

The first case that is not well represented by the model appears when the generated
sequence is a disordered join of big subsequences that are also subsequences of the target
sequence. We will expose this with an example: let st be the DNA target sequence which
is composed by two subsequences st0 and st1 (i.e., st = st0 + st1). Let sc = st1 + st0 be a
solution to the model, that is, a reconstructed target sequence. When st is compared with
sc (with methods such as the Needleman-Wunsch algorithm [29] or the Smith-Waterman
algorithm [32]) the similarity of both sequences is probably small. However, the model might
evaluate sc as a very good solution. Therefore solutions with high score in the model may be
very different from the original DNA target sequence.

In a second scenario the model evaluates with bad results sequences that may be equal or
similar to the DNA target sequence. This occurs when the generated solution contains few
oligonucleotides but the sequence obtained from it is similar (or equal) to the DNA target

sequence. This is because a target sequence st can be generated from a solution of only
⌈

|st|
l

⌉

oligonucleotides. In this case the model would rate the solution as a bad solution when its
similarity to the target sequence is high. For a better understanding we propose an imaginary
scenario where this situation occurs. Let us imagine a reduced spectrum with many negative
errors and no positive errors. The solutions generated from this spectrum will be rated as
bad solution with the model but they might be very similar or equal to the target sequence.

2.2.2 Formalization of the problem as a graph problem

The model described can also be studied as a graph problem. In most of this work this new
definition is used. However, we give both descriptions in order to simplify explanations. In
the following sections a minimal knowledge of graph theory is assumed.
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Let st be the DNA target sequence of the problem. Let n denote the number of nucleotide
bases of st. Therefore, st can be formally defined as st ∈ {A,C,G, T}n (i.e., as a word of
length n over the alphabet Σ = {A,C,G, T}). Furthermore, the spectrum —as obtained
by the hybridization experiment— is denoted by S. Let l denote the length of each oligonu-
cleotide (i.e., a short DNA strand) and s be a oligonucleotide which can be formally defined
as s ∈ {A,C,G, T}l and the spectrum S ∈ {{A,C,G, T}l}∗. In general, the length of any
oligonucleotide s is denoted by l(s).

Let G=(V,E) be a fully connected directed graph defined by V = S.1 Each edge e =
{s, s′} ∈ E of the graph has a weight ws,s′ = l − os,s′ , where os,s′ is the size of the largest
sequence that is both a suffix of s and a prefix of s′ (i.e., 0 ≤ os,s′ < l). The value os,s′ is
the overlap between probes s and s′. Let p define a directed path in G. The length of such
a path p, denoted by l(p), is defined as the number of vertices (i.e., oligonucleotides) on the
path. We define p[i] as the i-th vertex in a given path p (starting from position 1). Therefore
p = 〈p[1] . . . p[l(p)]〉—in this work we will use the notation ζ = 〈γ1, . . . , γn〉 to define that ζ is
an ordered set. We also define pini as the first vertex of p (i.e., pini = p[1]) and pend as the
last vertex of p (i.e, pend = p[l(p)]). In contrast to the length, the cost of a path p is defined
as follows

c(p) := l +

l(p)−1
∑

i=1

wp[i],p[i+1] (2.7)

The second term is a sum of all the weights of the edges which form part of the path. In
fact, c(p) is equivalent to the length of the DNA sequence that is obtained by the sequence
of oligonucleotides in p.2

According to the model described in [7], the problem of DNA sequencing by hybridization
consists in finding a directed path p∗ in G with l(p∗) ≥ l(p) for all possible paths p that fulfil
c(p) ≤ n, i.e.,

p∗ = argmaxp∈P (G){l(p)|c(p) ≤ n}, (2.8)

where P (G) denotes all the possible directed paths in G. In the following we refer to this
optimization problem as sequencing by hybridization (SBH). Notice that more than one path
p∗ may be a possible solution of SBH and that in any case, the DNA sequence obtained from
p∗ may not be equal to the original DNA target sequence st.

2.2.3 Example

As an example consider the target sequence st = ACTGACTC. Assuming l = 3, the ideal
spectrum is {ACT,CTG,TGA,GAC,ACT,CTC} because it contains all the possible subse-
quences of length 3 of st. However, let us assume that the hybridization experiment provides
us with the following faulty spectrum S = {ACT,TGA, GAC,CTC,TAA}. This spectrum has
two negative errors, because ACT should appear twice, but can only appear once—due to
the characteristics of the hybridization experiment—, and CTG does not appear at all in S.
Furthermore, S has one positive error, because it includes oligonucleotide TAA, which does
not appear in the target sequence.

An optimal directed path in this example is p∗ = 〈ACT,TGA,GAC,CTC〉 with l(p∗) = 4
and c(p∗) = 8. The DNA sequence that is retrieved from this path is equal to the target
sequence (see Figure 2.2).

1In following sections both notations will be used to refer to the spectrum.
2See Section 2.2.3 for an example.
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ACT
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CTC TAA
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1
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(a) The completely connected directed graph with
spectrum S = {ACT,TGA,GAC,CTC,TAA} as
the vertex set. The edge weights are also indicated
in a table in (b).

ACT TGA GAC CTC TAA

ACT − 2 3 1 2
TGA 2 − 1 3 3
GAC 1 3 − 2 3
CTC 3 3 3 − 3
TAA 2 3 3 3 −

(b) Edge weights of the graph.

A C T G A C T C

A C T G A C T C

A C T G A C T C

A C T G A C T C

A C T G A C T C

(c) DNA sequence retrieval
from a directed path.

Figure 2.2: In (a) the optimal path is p∗ = 〈ACT,TGA,GAC,CTC〉, which is represented by
thicker edges. In (c) is shown how to retrieve the DNA sequence that is encoded by p∗. Note
that c(p∗) = 8, which is equal to the length of the encoded DNA sequence.
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2.3 Combinatorial Optimization Problems

In the previous section we have formulated the SBH problem as a Combinatorial Optimization
problem. In general many optimization problems of practical as well as theoretical importance
consist of the search for a “best” configuration of a set of variables to achieve some goals.
They seem to divide naturally into two categories: those where solutions are encoded with
real-valued variables, and those where solutions are encoded with discrete variables. Among
the later ones we find a class of problems called Combinatorial Optimization (CO) problems.
According to Papadimitriou and Steigliz [30], in CO problems, we are looking for an object
from a finite—or possibly countably infinite—set. This object is typically an integer number, a
subset, a permutation or a graph structure. Formally, a Combinatorial Optimization problem
P = (S, f) can be defined by:

• a set of variables X = {x1, . . . , xn};

• variable domains D1, . . . Dn;

• constraints among variables;

• an objective function f to be maximized3 where f : D1 × · · · ×Dn → R+;

The set of all possible feasible assignments is S = {s = {(x1, v1), . . . , (xn, vn)}|vi ∈ Di, s
satisfies all the constraints }. S is usually called search (or solution) space, as each element
of the set can be seen as a candidate solution. To solve a combinatorial optimization problem
one has to find a solution s∗ ∈ S with maximum objective function value, that is,

f(s∗) ≥ f(s) ∀s ∈ S

. s∗ is called a globally optimal solution of (S, f) and the set S ∗ ⊆ S is called the set of
globally optimal solutions.

Examples of CO problems are the Travelling Salesman problem (TSP), Timetabling and
Scheduling problems. As mentioned above the computational part of the DNA sequencing
by hybridization is also a CO problem. Due to the practical importance of CO problems,
many algorithms to tackle them have been developed. These algorithms can be classified
either as complete or approximate algorithms. Complete algorithms are guaranteed to find
for every finite size instance of a CO problem an optimal solution in bounded time. Yet, for
CO problems that are NP-hard, no polynomial time algorithm exists, assuming that P 6= NP.
Therefore, complete methods might need exponential time in the worst-case. This often
leads to computation times too high for practical purposes. Thus, the use of approximate
methods to solve CO problems has received more and more attention in the last 30 years. In
approximate methods we sacrifice the guarantee of finding optimal solutions for the sake of
getting good solutions in a significantly reduced amount of time.

Among basic approximate methods we usually distinguish between constructive meth-
ods and local search methods. Constructive algorithms generate solutions from scratch by
adding—to an initially empty partial solution—components, until a solution is complete.
They are typically the fastest approximate methods, yet they often return solutions of infe-
rior quality when compared to local search algorithms. Local search algorithms start from

3As minimizing an objective function f is the same as maximizing −f , we will deal, without loss of generality,
with maximization problems
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some initial solution and iteratively try to replace the current solution by a better solution
in an appropriately defined neighborhood of the current solution, where the neighborhood is
formally defined as follows: A neighborhood structure is a function N : S → 2S that assigns
to every solution s ∈ S a set of neighbors N(s) ⊆ S. N(s) is called the neighborhood of s. A
move is the choice of a solution s′ from a neighborhood N(s) of a solution s.

In the last 20 years, a new kind of approximate algorithm has emerged which basically
tries to combine basic heuristic methods in higher level frameworks aimed at efficiently and
effectively exploring a search space. These methods are nowadays commonly called meta-
heuristics. This class of algorithms includes Ant Colony Optimization (CO), Evolutionary
Computation (EC) including Genetic Algorithms (GA), the Greedy Randomized Adaptive
Search Procedure (GRASP), Iterated Local Search (ILS), Simulated Annealing (SA), and
Tabu Search (TS). Up to now there is no commonly accepted definition for the term meta-
heuristic. In short, we could say that meta-heuristics are high level strategies for exploring
search spaces by using different methods.

2.3.1 Meta-heuristics

In this section some meta-heuristics are briefly described. For a more extensive overview on
meta-heuristics see, for example, [10].

• Basic Local Search, Iterative Improvement: Basic local search is usually called
iterative improvement, since each move is only performed if the resulting solution is bet-
ter than the current solution. The algorithm stops as soon as it finds a local minimum.

• Simulated Annealing (SA): The origins of the algorithm are in statistical mechanics
(Metropolis algorithm) and it was first presented as a search algorithm for CO problems
in Kirkpatrick et al. [27] and Cerny [15]. The fundamental idea is to allow moves
resulting in solutions of worse quality than the current solution (uphill moves) in order
to escape from local minima. The probability of doing such a move is decreased during
the search.

• Tabu Search (TS): Tabu Search is among the most cited and used meta-heuristics
for CO problems. The basic idea of TS was first introduced by Glover in [26], based
on earlier ideas formulated in Glover [25]. The simple TS algorithm applies a best
improvement local search as basic ingredient and uses a short term memory to escape
from local minima and to avoid cycles. The short term memory is implemented as a tabu
list that keeps track of the most recently visited solutions and forbids moves towards
them. The neighborhood of the current solution is thus restricted to the solutions that
do not belong to the tabu list.

• The Greedy Randomized Adaptive Search Procedure (GRASP): This tech-
nique is a simple meta-heuristic that combines constructive heuristics and local search.
GRASP is an iterative procedure, composed of two phases: solution construction and
solution improvement. The solution construction mechanism is characterized by two
main ingredients: a dynamic constructive heuristic and randomization. Assuming that
a solution s consists of a subset of a set of elements (solution components), the solution
is constructed step-by-step by adding one new element at a time. The choice of the next
element is done by picking it uniformly at random from a candidate list. The elements
are ranked by means of a heuristic criterion that gives them a score as a function of the
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benefit if inserted in the current partial solution. The candidate list, called restricted
candidate list (RCL), is composed of the best α elements. The second phase of the
algorithm is a local search process, which may be a basic local search algorithm such as
iterative improvement, or a more advanced technique such as Simulated Annealing or
Tabu Search.

• Evolutionary Computation (EC): These algorithms are inspired by nature’s ca-
pability to evolve living beings well adapted to their environment. EC algorithms can
be succinctly characterized as computational models of evolutionary processes. At each
iteration a number of operators is applied to the individuals of the current population
to generate the individuals of the population of the next generation (iteration). Usu-
ally, EC algorithms use operators called recombination or crossover to recombine two
or more individuals to produce new individuals. They also use mutation or modification
operators which cause a self-adaptation of individuals. The driving force in evolutionary
algorithms is the selection of individuals based on their fitness (this can be the value
of an objective function or the result of a simulation experiment, or some other kind of
quality measure). Individuals with a higher fitness have a higher probability to be cho-
sen as members of the population of the next iteration (or as parent for the generation
of new individuals). This corresponds to the principle of survival of the fittest in natural
evolution. It is the capability of nature to adapt itself to a changing environment, which
gave he inspiration for EC algorithms.

• Ant Colony Optimization (ACO): Ant Colony Optimization is a meta-heuristic
approach proposed in [17, 20, 18]. The inspiring source of ACO is the foraging behavior
of real ants. This behavior (as described by Deneubourg et al. in [16]) enables ants
to find shortest paths between food sources and their nest. While walking from food
sources to the nest and vice versa, ants deposit a substance called pheromone on the
ground. When they decide about a direction to go, they choose with higher probability
paths that are marked by stronger pheromone concentrations. This basic behavior is the
basis for a cooperative interaction which leads to the emergence of shortest paths. ACO
algorithms are based on a parametrized probabilistic model–the pheromone model–that
is used to model the chemical pheromone trails. A more detailed description of ACO
and its variants can be found in chapter 4.

2.3.2 Existing Approaches to the SBH

In the previous section we introduced some meta-heuristics to tackle Combinatorial Opti-
mization problems such as the SBH problem. However, existing approaches for the SBH
problem include complete as well as heuristic and meta-heuristic methods. In this section we
will introduce the existing approaches to the SBH problem.

The first approach to solve the SBH problem was a branch & bound method proposed
in [3]. However, this approach becomes unpractical with growing problem size. For example,
the algorithm was only able to solve 1 out of 40 different problem instances concerning DNA
target sequences with 200 nucleotide bases within one hour. Another argument against this
branch & bound algorithm is the fact that an optimal solution to the SBH problem does
not necessarily provide a DNA sequence that is equal to the target sequence. Therefore, the
importance of finding optimal solutions is not the same as for other optimization problems.
Therefore, the research community has focused on heuristic techniques for tackling the SBH
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Table 2.1: A list of approaches for the SBH problem.
Type of algorithm Identifier Publication

Constructive heuristic LAG B lażewicz et al. [3], 1999
Constructive heuristic OW B lażewicz et al. [2], 2002

Evolutionary algorithm EA1 B lażewicz et al. [8, 6], 2002
Evolutionary algorithm EA2 Endo [23], 2004
Evolutionary algorithm EA3 Bui and Youssef [14], 2004

Tabu search TS B lażewicz et al. [4], 2000
Tabu search / scatter search hybrid TS/SS B lażewicz et al. [5, 6], 2004

problem. Most of the existing approaches are meta-heuristics such as evolutionary algorithms
and tabu search techniques. A list of existing approaches for the SBH problem is given in
Table 2.1. We also want to remark at this point that some approaches exist for an easier
version of the SBH problem in which the first oligonucleotide of the target sequence is given
(see for example [24]).



Chapter 3

Constructive Heuristics

Despite the fact that well-working constructive heuristics are often the basis for well-working
meta-heuristics, only two constructive heuristics exist for the DNA sequencing problem by
hybridization. Both approaches were proposed by B lażewicz and colleagues; the first one is
a Look-Ahead Greedy (LAG) that was proposed in [3], and the second one called OW was
proposed in [2]. In this chapter we describe new types of constructive heuristics that will be
used later for the development of well-working ACO approaches. The contents of this chapter
are published in [11].

3.1 The LAG Heuristic

The constructive heuristic that we describe in the following is a version of the look-ahead
greedy (LAG) heuristic proposed in [3].

The idea of LAG is to start the path construction in graph G (see Section 2.2.2 for the
definition of G) with one of the probes of the spectrum, and to extend this path in a step-by-
step manner by means of a look-ahead strategy. The way in which this is done is shown in
Algorithm 1. In this algorithm—as well as in the other algorithms outlined in this section—
the following notations are used; given a subset Ŝ ⊆ S of the spectrum S, and a nucleotide
s ∈ Ŝ, we define:

bpre(s) := argmax{os′,s | s
′ ∈ Ŝ, s′ 6= s} , (3.1)

bsuc(s) := argmax{os,s′ | s
′ ∈ Ŝ, s′ 6= s} , (3.2)

In words, bpre(s) is the best available predecessor for s in Ŝ, that is, the oligonucleotide
that—as a predecessor of s—has the biggest overlap with s. Accordingly, bsuc(s) is the best
available successor for s in Ŝ. In case of ties, the first one that is found is taken.

The most important part of this heuristic is the look-ahead strategy that is used to chose
which node to add to a path p. This strategy consist in finding the oligonucleotide s∗ ∈ Ŝ
which maximizes the following function:

s∗ := argmax{op[l(p)],s + os,bsuc(s) | s ∈ Ŝ} (3.3)

In words, the heuristic will add to the end of the path p the oligonucleotide s∗ which has a
good overlap with the last node in p (i.e., p[l(p)]) and which also has a good best successor.

23
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Algorithm 1 Our LAG heuristic

input: A graph G = (S,E), and the length of the DNA target sequence n
s∗ := Choose Initial Oligonucleotide(S)
p := 〈s∗〉
Ŝ := S \ {s∗}
while c(p) < n do

s∗ := argmax{op[l(p)],s + os,bsuc(s) | s ∈ Ŝ}
Extend path p by adding s∗ to its end
Ŝ := Ŝ \ {s∗}

end while
p :=Find Best Subpath(p)
output: DNA sequence s that is obtained from p

Remember that l(p) is the length of the path p (i.e., the number of nodes in the path), and
c(p) denotes the length of the DNA sequence derived from p.

In the original version of LAG as presented in [3], the function Choose Initial Oligonu-
cleotide(S) chooses a random vertex for starting the path construction. However, we imple-
mented this function as follows. First, set Sbs ⊂ S is defined as the set of all oligonucleotides in
S whose best successor is better or equal to the best successor of all the other oligonucleotides
in S.

Sbs := {s ∈ S | ∀s′ ∈ S, os,bsuc(s) ≥ os′,bsuc(s′)} (3.4)

Then, set Swp ⊆ Sbs is defined as the set of all oligonucleotides in Sbs whose best predecessor
is worse or equal to the best predecessor of all the other oligonucleotides in Sbs:

Swp := {s ∈ Sbs | ∀s
′ ∈ Sbs, obpre(s),s ≤ obpre(s′),s′} (3.5)

As starting oligonucleotide we choose the one (from Swp) that is found first. The idea
hereby is to start the path construction with an oligonucleotide that has a very good successor
and at the same time a very bad predecessor. Such an oligonucleotide has a high probability
to coincide with the start of the DNA target sequence st.

Finally, in case c(p) > n, function Find Best Subpath settles for the longest (in terms of
the number of oligonucleotides) subpath p′ of p such that c(p′) ≤ n, and replaces p by p′.

Example

Let us use the example described in Section 2.2.3 to exemplify the LAG method. In this
example, the target sequence was st = ACTGACTC and the spectrum obtained from the
hybridization experiment was S = {ACT,TGA,GAC,CTC,TAA}.

In the first construction step of LAG, the first node is chosen. First Sbs is computed;
Sbs := {ACT,TGA,GAC} because ACT, TGA and GAC are the probes which have a perfect
successor. Then Swp is computed; Swp := {TGA}. Therefore the initial part of the sequence
is s := TGA and the initial path p := 〈TGA〉.

In the second step, a probe in Ŝ = {ACT,GAC,CTC,TAA} must be chosen to be added
at the end of p. Figure 3.1 shows the overlap—according to the look ahead function 3.3—of
the different possibilities. GAC is the one with the biggest overlap, therefore it is added at
the end of p (i.e., p := 〈TGA, GAC〉).
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p = 〈TGA〉

p = 〈TGA,ACT〉 p = 〈TGA,GAC〉 p = 〈TGA,CTC〉 p = 〈TGA,TAA〉

3 4 0 2

Figure 3.1: Overlap of the different possibilities of path extension in the second step of the
LAG example

In further steps of the algorithm ACT and CTC are added to the end of the path (thus,
p := 〈TGA,GAC,ACT,CTC〉). Finally TAA is added at the end of path but, afterwards, it
is removed from the path in the Find Best Subpath(p) method. Furthermore, the solution of
LAG is TGACTC. All the construction steps are described graphically in Figure 3.2.

3.2 The SH Heuristic

In order to study if the “look-ahead” mechanism of LAG is really useful, we propose a second
heuristic for the SBH problem: the SH heuristic.

SH is just a simplification of the LAG heuristic where SH stands for Simple Heuristic.
This heuristic is identical to LAG except that SH does not use the look-ahead strategy for
the choice of the respective next node. Instead, this heuristic adds the node which has
the best overlap with the so-far constructed path (i.e., the oligonucleotide s ∈ Ŝ which
maximizes op[l(p)],s); in other words, the choice is on the best successor of the last probe of
the path (i.e., bsuc(p[l(p)])). The complete procedure is shown in Algorithm 2, where the
procedures Choose Initial Oligonucleotide(S) and Find Best Subpath(p) are as explained for the
LAG heuristic in the previous section.

Example

Let us use the example described in Section 2.2.3, to exemplify also the SH method. In this
example, the target sequence was st = ACTGACTC and the spectrum obtained from the
hybridization experiment was S = {ACT,TGA,GAC,CTC,TAA}.

In the first construction step of SH , the first node is chosen. As in the LAG example, the
first node chosen is s := TGA and the initial path p := 〈TGA〉.

In the second step, a probe in Ŝ = {ACT,GAC,CTC,TAA} must be chosen to be added
at the end of p. Figure 3.3 shows the overlaps—according to the non look ahead function—of
the different possibilities. GAC is the one with the biggest overlap, therefore it is added at
the end of p (i.e., p := 〈TGA, GAC〉).
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ACT

TGA GAC

CTC TAA

(a) Original situation

ACT

TGA GAC

CTC TAA

(b) Possibilities of the
first step

ACT

TGA GAC

CTC TAA

(c) Possibilities of the
second step

ACT

TGA GAC

CTC TAA

(d) Possibilities of the
third step

ACT

TGA GAC

CTC TAA

(e) Final solution

Figure 3.2: Construction steps of the LAG example. The bold nodes and edges represent,
respectively, oligonucleotides and connections in the solution path. Solid but not bold edges
represent the possible choices of the corresponding step. Dashed edges are the remaining
edges of G

In further steps of the algorithm ACT and CTC are added to the end of the path (thus,
p := 〈TGA,GAC,ACT,CTC〉). Finally TAA is added at the end of path but, afterwards, it
is removed from the path in the Find Best Subpath(p) method. Furthermore, the solution of
SH is TGACTC. In this case both LAG and SH have followed the same construction steps to
solve the problem, therefore both have obtained the same solution.

3.3 The FB-LAG heuristic

FB-LAG is a simple extension of the LAG heuristic obtained by allowing the path construction
not only in forward direction but also in backward direction. We call this heuristic henceforth
Forward-Backward Look-Ahead Greedy (FB-LAG) heuristic. At each construction step the
heuristic decides (with the same criterion as LAG) to extend the current path either in forward
direction (i.e., from the tail of the path) or in backward direction (i.e., from the head of the
path).

A second change with respect to LAG concerns the implementation of the function Choose
Initial Oligonucleotide(S). As the path construction allows forward and backward construction,
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Algorithm 2 The SH heuristic

input: A graph G = (S,E), and the length of the target sequence n
s∗ := Choose Initial Oligonucleotide(S)
p := 〈s∗〉
Ŝ := S \ {s∗}
while c(p) < n do

s∗ := bsuc(p[l(p)])
Extend path p by adding s∗ to its end
Ŝ := Ŝ \ {s∗}

end while
p :=Find Best Subpath(p)
output: DNA sequence s that is obtained from p

p = 〈TGA〉

p = 〈TGA,ACT〉 p = 〈TGA,GAC〉 p = 〈TGA,CTC〉 p = 〈TGA,TAA〉

1 2 0 0

Figure 3.3: Overlap of the different possibilities of path extension in the second step of the
SH example

it is not necessary to start the path construction with an oligonucleotide that has a high
probability of being the beginning of the DNA target sequence. It is more important to start
with an oligonucleotide of the spectrum S that has a high probability of being part of the
DNA target sequence.

Thus the initial oligonucleotide s∗ is chosen in the following way:

s∗ := argmax{obpre2(s),bpre(s) + obpre(s),s + os,bsuc(s) + obsuc(s),bsuc2(s) | s ∈ S} , (3.6)

where bpre2(s) denotes the best predecessor of the best predecessor of s (i.e., bpre2 ≡
bpre(bpre(s))), and similar for bsuc2(s) (i.e., bsuc2 ≡ bsuc(bsuc(s))). Algorithm 3 details
the procedure of the FB-LAG heuristic.

Example

Let us use the same sequence as in the LAG example; the target sequence was st = ACTGACTC
and the spectrum was {ACT,TGA,GAC,CTC,TAA}. All the construction steps are described
graphically in Figure 3.5.
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Algorithm 3 The FB-LAG heuristic

input: A graph G = (S,E), and the length of the target sequence n
s∗ := Choose Initial Oligonucleotide(S)
p := 〈s∗〉
Ŝ := S \ {s∗}
while c(p) < n do

sr := argmax{op[l(p)],s + os,bsuc(s) | s ∈ Ŝ}

sl := argmax{obpre(s),s + os,p[1] | s ∈ Ŝ}
if op[l(p)],sr

+ osr,bsuc(s) > obpre(s),sl
+ osl,p[1] then

Extend path p by adding sr to its end
Ŝ := Ŝ \ {sr}

else
Extend path p by adding sl to its beginning
Ŝ := Ŝ \ {sl}

end if
end while
p :=Find Best Subpath(p)
output: DNA sequence s that is obtained from p

In the first construction step the first node is chosen. TGA and GAC are the two probes
that maximize Equation 3.6. Let us suppose that GAC is the first one found. Therefore,
GAC is chosen to be the initial path (i.e., p := 〈GAC〉).

In the second step, a probe in Ŝ = {ACT,TGA,CTC,TAA} must be chosen to be added
at the beginning or at the end of the path. Figure 3.4 shows the overlap of the different
possibilities. Inserting ACT at the end of p is the one with biggest overlap, therefore it is
added at the end of p = 〈GAC,ACT〉.

p = 〈GAC〉

p = 〈GAC,ACT〉 p = 〈GAC,TGA〉 p = 〈GAC,CTC〉 p = 〈GAC,TAA〉 p = 〈ACT,GAC〉 p = 〈TGA,GAC〉 p = 〈CTC,GAC〉 p = 〈TAA,GAC〉

4 1 1 1 1 3 2 1

Figure 3.4: Overlap of the different possibilities of path extension in the second step of the
FB-LAG example

In further steps CTC is added at the end of the path (i.e., p := 〈GAC,ACT,CTC〉), and
TGA is added at the beginning of the resulting path (i.e., p := 〈TGA,GAC,ACT,CTC〉).
Therefore the solution sequence of FB-LAG is TGACTC.
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(a) Original situation

ACT

TGA GAC
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(b) Possibilities of the
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(c) Possibilities of the
second step

ACT

TGA GAC

CTC TAA
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Figure 3.5: Construction steps of the FB-LAG example. The bold nodes and edges represent,
respectively, used oligonucleotides and connections in the solution path. Solid but not bold
edges represent the possible choices of the step. Dashed edges are the remaining edges of G.

3.4 The FB-SH heuristic

Corresponding to FB-LAG , we also propose the extension of SH. The resulting Forward-
Backward Simple Heuristic (FB-SH), is a simplification of the FB-LAG heuristic. It differs from
SH by allowing the path construction to both sides. Therefore, in every construction it chooses
between the best predecessor of the first node of the path, and the best successor of the last
node of the path, in an attempt to maximize the overlap. The complete procedure is shown in
Algorithm 4, where the procedure Choose Initial Oligonucleotide(S) and Find Best Subpath(p)
are as explained in the FB-LAG heuristic in the previous section.

Example

Let us use the same sequence as in the FB-LAG example; the target sequence was st =
ACTGACTC and the spectrum was {ACT,TGA,GAC,CTC,TAA}.

In the first construction step the first node is chosen. As in FB-LAG heuristic, GAC is
chosen to be the initial path (i.e., p := 〈GAC〉).

In the second step, a probe in Ŝ = {ACT,TGA,CTC,TAA} must be chosen to be added
at the beginning or at the end of the path. Figure 3.6 shows the overlap of the different
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Algorithm 4 The FB-SH heuristic

input: A graph G, and the length of the target sequence n
s∗ := Choose Initial Oligonucleotide(S)
p := 〈s∗〉
Ŝ := S \ {s∗}
while c(p) < n do

sr := bsuc(p[l(p)])
sl := bpre(p[1])
if op[l(p)],sr

> osl,p[1] then
Extend path p by adding sr to its end
Ŝ := Ŝ \ {sr}

else
Extend path p by adding sl to its beginning
Ŝ := Ŝ \ {sl}

end if
end while
p :=Find Best Subpath(p)
output: DNA sequence s that is obtained from p

possibilities. Inserting ACT at the end of p and adding TGA at the beginning of p are the
two choices with biggest overlap. Let us assume that ACT is the first found. Therefore it is
added at the end of p = 〈GAC,ACT〉.

p = 〈GAC〉

p = 〈GAC,ACT〉 p = 〈GAC,TGA〉 p = 〈GAC,CTC〉 p = 〈GAC,TAA〉 p = 〈ACT,GAC〉 p = 〈TGA,GAC〉 p = 〈CTC,GAC〉 p = 〈TAA,GAC〉

2 0 1 0 0 2 0 0

Figure 3.6: Overlap of the different possibilities of path extension in the second step of the
FB-SH example

In further steps TGA is added at the beginning of the path (i.e., p := 〈TGA,GAC,ACT〉)
and CTC at the end of the resulting path (i.e., p := 〈TGA,GAC,ACT,CTC〉). Therefore the
resulting DNA sequence of FB-SH is TGACTC.

3.5 The SM Heuristic

This is the fifth heuristic we propose for the SBH problem. The idea of the sub-sequence
merger (SM) heuristic (see Algorithm 5) is conceptionally quite different to the LAG, SH, FB-
LAG and FB-SH heuristics. Instead of constructing one single path, the SM heuristic starts
with a set P of |S| paths (i.e., P = {〈s〉|s ∈ S}), each of which only contains exactly one
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oligonucleotide s ∈ S, and then merges paths until a path of sufficient size is obtained. The
heuristic works in two phases. In the first phase, two paths p and p′ can only be merged if p′

is the unique best successor of p, and if p is the unique best predecessor of p ′. The heuristic
enters into the second phase if and only if, the first phase has not already produced a path
of sufficient length. In the second phase, the uniqueness conditions are relaxed, that is, two
paths p and p′ can be merged if p′ is among the best successors of p, and p is among the best
predecessors of p′. The reason of having two phases is the following: The first phase aims to
produce possibly error free sub-sequences of the DNA target sequence, whereas the second
phase (which is more error prone due to the relaxed uniqueness condition) aims at connecting
the sub-sequences produced in the first phase in a reasonable way.

In Algorithm 5, given two paths p and p′, op,p′ is defined as op[l(p)],p′[1], that is, op,p′ is
the overlap of the last oligonucleotide in p with the first one in p′. In correspondence to the
notations introduced in Equations 3.1 and 3.2, the following notations are used:

bsuc(p) := argmax{op,p′ | p
′ ∈ P, p′ 6= p} , (3.7)

bpre(p) := argmax{op′,p | p
′ ∈ P, p′ 6= p} . (3.8)

where P is the set of paths.

Furthermore, Sbsuc(p) is defined as the set of best successor paths of p, that is,

Sbsuc(p) := {p′ ∈ P | op,p′ = op,bsuc(p)}, (3.9)

and Sbpre(p) is defined as the set of best predecessors of p, that is,

Sbpre(p) := {p′ ∈ P | op′,p = obpre(p),p}. (3.10)

Finally, function Find Best Subpath(p) is implemented as outlined before.

Example

Let us consider, as an example, the target sequence st = ACTAGGG. Assuming l = 3, the
ideal spectrum is {ACT,CTA,TAG,AGG,GGG}. However, let us assume that the hybridiza-
tion experiment provides us with the following faulty spectrum S = {ACT,CTA,TAG,GGG,
CTT, TTT}. This spectrum has one negative error, because AGG does not appear in S.
Furthermore, S has two positive errors, because it includes the oligonucleotides CTG and
TTT, which do not appear in the target sequence. Let us use this example to show the steps
of SM.

In the first phase CTA with TAG and CTT with TTT are merged creating p0 := 〈CTA,
TAG〉 and p1 := 〈CTT, TTT〉. The resulting p0 := 〈CTA, TAG〉 is merged with 〈GGG〉. In
the first phase 〈ATC〉 can not be merged neither with 〈CTA〉 nor 〈CTT〉 because they both
have the same overlap.

In the second phase two options are presented; merging p1 = 〈ACT〉 with p2 = 〈CTA,
TAG, GGG〉 or with p3 = 〈CTT,TTT〉. As the the length of p1 is greater than the length of
p2, the first one is chosen (i.e., l(p1) + l(p2) > l(p1) + l(p3)). The resulting final path is 〈ACT,
CTA, TAG, GGG〉 which represents the target sequence.
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Algorithm 5 The SM heuristic

1: input: A graph G = (S,E), and the length of the target sequence n
2: P := {〈s〉 | s ∈ S}

3:

4: PHASE 1:
5: stop := false

6: for overlap := l − 1, to 1 do
7: while ∃ p, p′ ∈ P s.t. op,p′ ≥ overlap & |Sbsuc(p)| = 1 & |Sbpre(p

′)| = 1 & bsuc(p) = p′

& bpre(p′) = p & not stop do
8: Add path p′ to the end of path p
9: P := P \ {p′}

10: stop:= c(p) ≥ n
11: end while
12: end for

13:

14: PHASE 2:
15: for overlap := l − 1, to 1 do
16: while ∃ p, p′ ∈ P s.t. op,p′ ≥ overlap & p′ ∈ Sbsuc(p) & p ∈ Sbpre(p

′) & not stop do
17: Choose p and p′ such that l(p) + l(p′) is maximal
18: Add path p′ to the end of path p
19: P := P \ {p′}
20: stop := c(p) ≥ n
21: end while
22: end for
23: Let p be the path in P with maximal cost
24: p := Find Best Subpath(p)
25: output: DNA sequence s that is obtained from p



3.6. THE HSM HEURISTIC 33

ACT CTA

TAG GGG

CTT TTT

(a) Original situation

ACT CTA

TAG GGG

CTT TTT

(b) Possibilities of the
first step

ACT CTA

TAG GGG

CTT TTT

(c) Possibilities of the
second step

ACT CTA

TAG GGG

CTT TTT

(d) Possibilities of the
third step

ACT CTA

TAG GGG

CTT TTT

(e) Final solution

Figure 3.7: Construction steps of the SM example. The bold edges represent all the nodes
which are merged in a path, and the bold nodes represent the last path that has been con-
structed. Solid but not bold edges represent the possible choices of the step. Dashed edges
are the remaining edges of G.

3.6 The HSM Heuristic

The sixth heuristic we propose for the SBH problem is the Hybrid Sub-sequence Merger
(HSM) heuristic, which is obtained by combining the FB-LAG heuristic with the SM heuristic.
This combination is based on the following observation: At every stage of the SM heuristic,
the FB-LAG heuristic can be applied to the problem instance that is obtained as follows.
Given the current path set P of the SM heuristic, a spectrum Ŝ is created that contains the
DNA sequences retrieved from the paths in P .1 The result of the FB-LAG heuristic when
applied to such a problem instance can (of course) be regarded as a solution to the original
problem instance. The complete procedure is shown in Algorithm 6.

It remains to specify at which stages of the SM heuristic the FB-LAG heuristic is applied.
The first application of FB-LAG is the one to the original problem instance, that is, before
the first phase of SM has started. Then, in the first as well as in the second phase of SM,
FB-LAG is applied at the end of the respective for-loop (i.e., after line 11 and after line 21
in Algorithm 5). However, FB-LAG is only applied if the while-loop before was executed at

1Note that the oligonucleotides of such a spectrum might have (1) length> l, and (2) different lengths.



34 CHAPTER 3. CONSTRUCTIVE HEURISTICS

least once. Note that in case the while-loop is not even executed a single time, the problem
instance derived from the path set P has not changed since the previous application of FB-
LAG. Finally, the output of HSM is the best result among the different applications of FB-LAG
and the final result of SM.

3.7 The S-HSM heuristic

The last heuristic we propose is the the Simple Hybrid Sub-sequence Merger (S-HSM) heuristic
which is obtained by combining the FB-SH heuristic with the SM heuristic. It is the same
heuristic as HSM, except that HSM uses FB-SH instead of FB-LAG (i.e., in lines 3, 16 and 33
of Algorithm 6 the heuristic used is FB-SH instead of FBLAG).

3.8 Experimental results

In this section we report on some experiments that were performed in order to evaluate the
quality of the proposed heuristics.

We implemented the 7 heuristics outlined before in ANSI C++ using GCC 3.2.2 for
compiling the software. Our experimental results were obtained on a PC with AMD64X2
4400 processor and 4 Gb of memory.

A wide-spread set of benchmark instances for DNA sequencing by hybridization was intro-
duced by B lażewicz et al. in [3]. It consists of DNA target sequences coding human proteins
obtained from GenBank, which is a database of genetic sequences provided by the National
Institutes of Health, USA.2 The instance set consists of 40 DNA target sequences of length
109, 209, 309, 409, and 509 (altogether 200 instances). Based on real hybridization experi-
ments, the spectra were generated with probe size l = 10. All spectra contain 20% negative
errors as well as 20% positive errors. For example, the spectra concerning the DNA target se-
quences of length 109 contain 100 oligonucleotides of which 20 oligonucleotides do not appear
in the target sequences.

We applied the 7 heuristics outlined in the previous sections to all problem instances. The
results are shown in Tables 3.1 to 3.7. Each table contains the results of the corresponding
heuristic averaged over the 40 problem instances of each of the five different sizes. The
second row of each table contains the average solution quality (i.e., the average number of
oligonucleotides in the constructed paths). Remember that the optimization objective in the
SBH problem is to maximize this value. The third table row provides the number (out of 40) of
solved problem instances, that is, the number of instances for which a path of maximal length
could be found.3 The fourth and fifth table row provide average similarity scores obtained by
comparing the computed DNA sequences with the DNA target sequences. The average scores
in the fourth table row are obtained from the Needleman-Wunsch algorithm [29], which is an
algorithm for global alignment. In contrast, the average scores that are displayed in the fifth
table row are obtained by the application of the Smith-Waterman algorithm [32], which is an
algorithm for local alignment. Both algorithms were applied with the following parameters:
+1 for a match of oligonucleotides, -1 for a mismatch or a gap. Finally, the sixth table row
provides the average computation times for solving one instance (in seconds).

2The database access keys for all DNA target sequences are provided in [3].
3Remember in this context that an optimal solution to the SBH problem does not necessarily correspond

to a DNA sequence that is equal to the target sequence.
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Algorithm 6 The HSM heuristic

1: input: A graph G = (S,E), and the length of the target sequence n
2: P := {〈s〉 | s ∈ S}
3: pFB-LAG := result of the application of FB-LAG to a graph G′ created from P
4: p∗ := pFB-LAG

5: PHASE 1:
6: stop := false

7: for overlap := l − 1, to 1 do
8: change := false

9: while ∃ p, p′ ∈ P s.t. op,p′ ≥ overlap & |Sbsuc(p)| = 1 & |Sbpre(p
′)| = 1 & bsuc(p) = p′

& bpre(p′) = p & not stop do
10: Add path p′ to the end of path p
11: P := P \ {p′}
12: change := true

13: stop := c(p) ≥ n
14: end while
15: if change then
16: pFB-LAG := result of the application of FB-LAG to a graph G′ created from P
17: if l(p∗) < l(pFB-LAG ) then
18: p∗ := pFB-LAG

19: end if
20: end if
21: end for
22: PHASE 2:
23: for overlap := l − 1, to 1 do
24: change := false

25: while ∃ p, p′ ∈ P s.t. op,p′ ≥ overlap & p′ ∈ Sbsuc(p) & p ∈ Sbpre(p
′) & not stop do

26: Choose p and p′ such that l(p) + l(p′) is maximal
27: Add path p′ to the end of path p
28: P := P \ {p′}
29: change := true

30: stop := c(p) ≥ n
31: end while
32: if change then
33: pFB-LAG := result of the application of FB-LAG to a graph G′ created from P
34: if l(p∗) < l(pFB-LAG ) then
35: p∗ := pFB-LAG

36: end if
37: end if
38: end for
39: Let pSM be the path in P with maximal cost
40: pSM := Find Best Subpath(pSM )
41: if l(p∗) < l(pSM ) then
42: p∗ := pSM

43: end if
44: output: DNA sequence s that is obtained from p∗



36 CHAPTER 3. CONSTRUCTIVE HEURISTICS

From the results that are displayed in Tables 3.1 to 3.7 we can draw the following con-
clusions. First, and quite surprisingly, LAG and SH get quite similar results. In fact SH gets
better results in most of the runs (specially in small instances). Therefore, this indicates that
the look-ahead strategy is not effective in this problem. Second, the results of FB-LAG improve
in general over the results of LAG (respectively FB-SH improves over SH). This means that it
is beneficial to allow the path construction in two directions (forward as well as backward).
Third, the results of the SM heuristic are clearly better than the results of the lineal con-
struction heuristics (LAG , FB-LAG , SH and FB-SH), specially in the similarity score and in
the number of solved instances. Forth, the best results are obtained by the hybrid heuristics
(both HSM and S-HSM). When comparing between them we can see that in this case, the
use of the look-ahead strategy is beneficial, because HSM improves over S-HSM . Even for the
largest problem instances, the HSM heuristic produces sequences with very high similarity
scores.

In order to provide a comparison of all existing constructive heuristics we added the OW
heuristic [2] to this comparison. This comparison is shown graphically in Figure 3.8. The
results clearly show that HSM is currently the best available constructive heuristic. Finally,
in Figure 3.9 we present a comparison between HSM and the best available meta-heuristic
approaches from the literature, namely, the evolutionary algorithms EA1 to EA3, the tabu
search TS, and the hybrid tabu search with scatter search TS/SS, all of them are cited in
section 2.3.2. The results are surprising: HSM is clearly better than the 4 meta-heuristic
approaches EA1, EA3, TS, and TS/SS. Furthermore, the results of HSM are—except for the
problem instances of target sequence size 509—comparable to the results of the best meta-
heuristic approach EA2. Taking into account the advantage in computation time (i.e., HSM
needs not even half a second to compute its results for the largest problem instances, while the
meta-heuristics need between several seconds and several minutes) the HSM heuristic seems
to be a good choice even when compared to meta-heuristic approaches.
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Table 3.1: Results of LAG for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 76.98 153.53 230.68 309.03 383.08
Solved instances 23 15 12 7 4
Average similarity score (global) 77.05 133.63 171.78 206.80 218.60
Average similarity score (local) 91.83 152.43 209.33 272.40 293.48
Average computation time (sec) 0.0035 0.016 0.037 0.076 0.13

Table 3.2: Results of SH for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 77.20 152.77 229.00 302.72 375.27
Solved instances 26 18 18 7 5
Average similarity score (global) 80.85 142.10 199.97 214.05 269.67
Average similarity score (local) 95.27 167.20 234.80 277.32 334.90
Average computation time (sec) 0.0027 0.012 0.024 0.042 0.068

Table 3.3: Results of FB-LAG for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 78.38 155.70 234.95 310.03 386.20
Solved instances 32 17 18 7 1
Average similarity score (global) 99.78 153.03 225.45 241.00 221.83
Average similarity score (local) 102.38 174.15 253.63 284.58 290.13
Average computation time (sec) 0.0051 0.022 0.054 0.11 0.19

Table 3.4: Results of FB-SH for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 77.65 148.27 218.32 299.30 355.65
Solved instances 36 21 19 13 5
Average similarity score (global) 102.27 159.47 213.50 247.20 226.02
Average similarity score (local) 104.12 179.47 252.10 303.67 319.40
Average computation time (sec) 0.004 0.014 0.031 0.059 0.092
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Table 3.5: Results of SM for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 79.75 157.80 234.90 306.90 367.38
Solved instances 38 31 30 28 18
Average similarity score (global) 106.33 195.85 284.68 357.98 376.25
Average similarity score (local) 107.20 203.03 293.75 377.00 416.68
Average computation time (sec) 0.005 0.02 0.046 0.082 0.13

Table 3.6: Results of HSM for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 80.00 159.68 239.90 319.38 398.88
Solved instances 40 36 39 35 31
Average similarity score (global) 108.40 204.78 300.00 396.90 469.55
Average similarity score (local) 108.70 206.85 305.35 399.85 479.88
Average computation time (sec) 0.012 0.048 0.11 0.21 0.35

Table 3.7: Results of S-HSM for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 80.00 159.55 238.67 318.40 394.55
Solved instances 40 36 36 32 28
Average similarity score (global) 108.40 204.55 285.62 375.87 425.02
Average similarity score (local) 108.70 206.85 298.72 387.33 456.58
Average computation time (sec) 0.0072 0.032 0.076 0.13 0.23
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(b) Number of optimally solved instances.

Figure 3.8: Comparison of all existing constructive heuristics. The comparison concerns the
instances of B lażewicz et al. [3].
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Figure 3.9: Comparison of HSM with meta-heuristics from the literature. The comparison is
done concerning the global average similarity score obtained for the instances by B lażewicz
et al. [3].



Chapter 4

Ant Colony Optimization: ACO

In section 2.3 we have introduced meta-heuristics as tools for solving Combinatorial Optimiza-
tion problems. We also mentioned briefly a meta-heuristic named ant colony optimization
(ACO) [21] which is the one we will use in this thesis for tackling the SBH problem. In this
chapter we will give a more detailed description of ACO.

4.1 Introduction

Ant colonies, and more generally social insect societies, are distributed systems that, in spite
of the simplicity of their individuals, present a highly structured social organization. As a
result of this organization, ant colonies can accomplish complex tasks that in some cases far
exceed the individual capabilities of a single ant.

The field of “ant algorithms” studies models derived from the observation of real ants’
behavior, and uses these models as a source of inspiration for the design of novel algorithms
for the solution of optimization and distributed control problems.

One of the most successful examples of ant algorithms is known as “ant colony optimiza-
tion”, or ACO. ACO is inspired by the foraging behavior of ant colonies, and targets discrete
optimization problems.

4.1.1 Path search: double bridge experiments

The visual perceptive faculty of many ants species is only rudimentary developed and there are
ant species that are completely blind. In fact, most of the communication among individuals,
or between individuals and the environment, is based on the use of chemicals produced by
ants. These chemicals are called pheromones. Particularly important for the social life of
some ant species is the trail pheromone. Trail pheromone is a specific type of pheromone that
some ants species use for marking paths on the ground, for example, paths from food sources
to the nest. By sensing pheromone trails ants can follow the path to food discovered by other
ants.

The foraging behavior of many ant species, as for example, I. humilis [16], Linepithema
humile, and Lasius niger [12] is based on indirect communication mediated by pheromones.
While walking from food sources to the nest and vice versa, ants deposit pheromones on the
ground, forming in this way a pheromone trail. Ants can smell the pheromone and they tend
to choose, probabilistically, paths marked by strong pheromone concentrations.

41
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Nest Food

Figure 4.1: Experimental setup for a double bridge experiment where the ratio r = ll/ls is
greater than 1 (i.e., ll > ls).

Deneubourg and colleagues [16] did an experiment to study how ants use pheromone trails
to create shortest paths form the nest to the food sources. This experiment consisted of a
double bridge connecting a nest of ants and a food source. They ran experiments varying the
ratio r = ll/ls between ll the length of the longer branch, and ls the length of the shorter one
of the double bridge. Figure 4.1 shows a graphical example of the experimental setup of the
experiment.

In the first experiment the bridge had two branches of equal length (r = 1). At the
start, ants were left free to move between the nest and the food source and the percentage of
ants that chose one or the other of the two branches were observed over time. The outcome
was that although in the initial phase random choices occurred, eventually all the ants used
the same branch. This result can be explained as follows. When a trial starts there is no
pheromone on the two branches. Hence, the ants do not have a preference and they select
with the same probability any of the branches. Yet, because of random fluctuations, a few
more ants will select one branch over the other. Because ants deposit pheromone while
walking, a larger number of ants on a branch results in a larger amount of pheromone on that
branch; this larger amount of pheromone in turn stimulates more ants to choose that branch
again, and so on until finally the ants converge to one single path. This auto-catalytic or
positive feedback process is, in fact, an example of a self-organizing behavior of the ants: a
macroscopic pattern (corresponding to the convergence towards one branch) emerges out of
processes and interactions taking place at a “microscopic” level. Another important factor
for this behavior is the pheromone evaporation. Pheromone deposited evaporates in a certain
time. This enables to “erase” pheromone paths.

In the second experiment, the length ratio between the two branches was set to r = 2, so
that the long branch was twice as long as the short one. In this case, in most of the trials,
after some time all the ants chose to use only the short branch. As in the first experiment,
ants leave the nest to explore the environment and arrive at a decision point where they have
to explore the environment and arrive at a decision point where they have to choose one
of the two branches. Because the two branches initially appear identical to the ants, they
choose randomly. Therefore, it can be expected that, on average, half of the ants choose the
short branch and the other half the long branch. However, this experimental setup presents
a remarkable difference with respect to the previous one: because one branch is shorter than
the other, the ants choosing the short branch are the first to reach the food and to start their
return to the nest. But then, when they must make a decision between the short and the long
branch, the higher level of pheromone on the short branch will bias their decision in its favor.
Therefore, pheromone starts to accumulate faster on the short branch, which will eventually
be used by all the ants because of the auto-catalytic process described previously. Figure 4.2
represents this experiment.
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Nest Food

(a) All ants are in the nest. There is no
pheromone in the environment.

xxxNest Food

(b) The foraging starts. In probability, 50%
of the ants take the short path (symbolized
by circles), and 50% take the long path to
the food source (symbolized by diamonds).

xxxNest Food

(c) The ants that have taken the short
path have arrived earlier at the food source.
Therefore, when returning, the probability
to take again the short path is higher.

x x

x

Nest Food

(d) The pheromone trail on the short path
receives, in probability, a stronger rein-
forcement, and the probability to take this
path grows. Finally, due to the evapora-
tion of the pheromone on the long path,
the whole colony will, in probability, use
the short path.

Figure 4.2: An experimental setting that demonstrates the shortest path finding capability
of ant colonies. Between the ants’ nest and the only food source exist two paths of different
lengths. In the four graphics, the pheromone trails are shown as dashed lines whose thickness
indicates the trails’ strength.

4.2 Ant System: an initial algorithm

Inspired by the foraging behavior of real ants and its influence in the emergence of shortest
paths in the double-bridge experiments, researchers tried to capture the behavior of real ants
in an algorithmic framework. The aim was to be able to apply such a technique to solve
discrete optimization problems other than the shortest path problem.

4.2.1 The discretized model

As a first step towards an algorithm for discrete optimization, we present in the following a
discretized and simplified model for the double-bridge experiment with real ants described
at the previous section. The model consists of a graph G = (V,E), where V consists of two
nodes, namely vs (representing the nest of the ants), and vd (representing the food source).
Furthermore, E consists of two links, namely e1 and e2, between vs and vd. To e1 we assign a
length of l1 and to e2 a length of l2 such that l2 > l1. In other words, e1 represents the short
path between vs and vd, and e2 represents the long path. Real ants deposit pheromone on
the paths on which they move. Thus, the chemical pheromone trails are modeled as artificial



44 CHAPTER 4. ANT COLONY OPTIMIZATION: ACO

pheromone trails on the corresponding path e1 and e2: path e1 has pheromone τ1 and path
e2 has pheromone τ2. Finally we introduce na artificial ants. Each ant behaves as follows:

Starting from vs (i.e., the nest), an ant chooses with probability

p[choosing path ei] =
τi

τ1 + τ2
, i ∈ {1, 2}, (4.1)

between path e1 and path e2 for reaching the food source vd. Obviously, if τ1 > τ2, the
probability of choosing e1 is higher, and vice-versa. For returning from vd to vs, an ant uses
the same path as it chose to reach vd, and it changes the artificial pheromone value associated
to the used edge. More in detail, having chosen edge ei an ant changes the artificial pheromone
value τi as follows:

τi := τi +
Q

li
(4.2)

where the positive constant Q is a parameter of the model. In other words the artificial
pheromone that is added depends on the length of the chosen path: the shorter the path, the
higher the amount of added pheromone.

The foraging of an ant colony is in this model simulated as follows: At each step (or
iteration) all the artificial ants are initially placed in node vs. Then, each ant moves from vs

to vd as outlined above. Finally the pheromone evaporation in the artificial model is simulated
by updating the pheromone of each path ei ∈ {e1, e2} in the following way:

τi := (1− ρ) · τi, i ∈ {1, 2} (4.3)

The parameter ρ ∈ (0, 1] regulates the pheromone evaporation. Finally, all ants conduct their
return trip and reinforce their chosen path as outlined above. Except from small differences
this model represents the behavior of real ants.

4.2.2 Ant System for the TSP: The first ACO algorithm

The model used in the previous section to simulate the foraging behavior of real ants in the
double bridge experiment cannot directly be applied to CO problems. Among other reasons,
this is because we associated pheromone values directly to solutions to the problem (i.e.,
one parameter τ1 for short the path, and one parameter τ2 for the long path). This way of
modeling implies that the solutions to the considered problem are already known. However, in
combinatorial optimization we intend to find an unknown optimal solution. Thus, when CO
problems are considered, pheromone values are associated to solution components instead.
Solution components are expected to be finite and of moderate size. As an example we
present the first ant colony-based algorithm, called Ant System (AS)[17, 20], applied to the
well known CO problem TSP (Travelling Salesman Problem).

In the TSP is given a completely connected, undirected graph G = (V,E) with edge-
weights. The nodes V of this graph represent cities, and the edge weights represent the
distances between the cities. The goal is to find a cycle in G that contains each node exactly
once (henceforth called tour) and whose length is minimal (i.e., Hamiltonian circuit of minimal
length). Thus, the search space S consists of all tours in G. The objective function value
f(s) of a tour s ∈ S is defined as the sum of the edge-weights of the edges that are in s.

Concerning the AS approach, the edges of the given TSP graph can be considered solution
components and thus for each ei,j is introduced a pheromone value τi,j. The task of each ant
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consists in the construction of a feasible TSP solution (i.e., a feasible tour). In other words,
the notion of task of an ant changes from “choosing a path from the nest to the food source”
to “constructing a feasible solution to the tackled optimization problem”. Note that with this
change of task, the notions of nest and food source lose their meaning.

Each ant constructs a solution as follows. First, one of the nodes of the fully-connected
input graph is randomly chosen as start node. Then, the ant builds a tour in the TSP graph by
moving in each construction step from its current node (i.e., the city in which she is located)
to another node which she has not visited yet. At each step, the traversed edge is added to
the solution under construction. When no unvisited nodes are left, the ant closes the tour
by moving from her current node to the node in which she started the solution construction.
This way of constructing a solution is performed probabilistically as follows. Assuming the
ant to be in node vi, the subsequent construction step is done with probability

p(ei,j) =
τi,j

∑

{k∈{1,...,|V |}|vk /∈T} τi,k
, ∀j ∈ {1, . . . , |V |}, vj /∈ T. (4.4)

where T is the set of nodes the ant has already visited. For an example of such a solution
construction, see Fig 4.3

Once all ants of the colony have completed the construction of their solution, pheromone
evaporation is performed as follows:

τi,j := (1− ρ) · τi,j, ∀τi,j ∈ T (4.5)

where T is the set of all pheromone values. Then the ants perform their return trip. Hereby,
an ant—having constructed a solution s—performs for each ei,j ∈ s the following pheromone
deposit:

τi,j := τi,j +
Q

f(s)
(4.6)

where Q is again a positive constant and f(s) is the objective function value for the solution s.
As explained in the previous section, the system is iterated—applying na ants per iteration—
until a stopping condition (e.g., a time limit) is satisfied. Even though the AS algorithm has
achieved to transform the ants foraging behavior into an algorithm for discrete optimization
its performance was not often as good as desired. Therefore, over years, several extensions
and improvements of the original AS algorithm were introduced. They are all covered by the
definition of the ACO meta-heuristic, which we will outline in the following section.

4.3 The ant colony optimization meta-heuristic

The ACO meta-heuristic, as we know it today, was first formalized by Dorigo and colleagues
in 1999 [18]. The definition of the ACO meta-heuristic covers most—if not all—existing ACO
variants for discrete optimization problems. In the following, we give a general description of
the framework of this more complete ant colony-based meta-heuristic.

The ACO meta-heuristic shares some basic ideas with the initial AS meta-heuristic. Given
a CO problem to be solved, one first has to derive a finite set C of solution components which
are used to assemble solutions to the CO problem. Second, one has to define a set of pheromone
values T . This set of values is commonly called the pheromone model, which is—seen from
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(a) First step of the solution construction.
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(b) Second step of the solution construction.
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(c) The complete solution after the final construction step.

Figure 4.3: Example of the solution construction for a TSP problem consisting of 4 cities
(modelled by a graph with 4 nodes). The solution construction starts by randomly choosing
a start node for the ant; in this case node 1. Figures (a) and (b) show the choices of the first,
respectively the second, construction step. Note that in both cases the current node (i.e.,
location) of the ant is marked by dark gray color, and the already visited nodes are marked
by light gray color. The choices of the ants (i.e., the edges she may traverse) are marked
by dashed lines. The probabilities for the different choices (according to equation 4.4) are
given at the right of the graphics. Note that after the second construction step, in which we
exemplary assume the ant to have selected node 4, the ant can only move to node 3, and then
back to node 1 in order to close the tour.
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Algorithm 7 Ant colony optimization (ACO)

1: while termination conditions not met do
2: AntBasedSolutionConstruction() {see Algorithm 8}
3: PheromoneUpdate()
4: DaemonActions() {optional}
5: end while

Algorithm 8 Procedure AntBasedSolutionContruction() of Algorithm 7

1: s=〈〉
2: Determine N (s)
3: while N (s) 6= ∅ do
4: c:=ChooseFrom(N (s))
5: s:=extend s by appending solution component c
6: Determine N (s)
7: end while

a technical point of view–a parametrized probabilistic model. The pheromone model is one
of the central components of the ACO meta-heuristic. The pheromone values τi ∈ T are
usually associated to solution components or to associations between solution components.
The pheromone model is used to probabilistically to generate solutions to the problem under
consideration, by assembling them from the set of solution components. In general, similar to
AS, the ACO approach attempts to solve an optimization problem by iterating the following
two steps:

1. candidate solutions are constructed using a pheromone model, that is, a parametrized
probability distribution over the solution space;

2. the candidate solutions are used to modify the pheromone values in a way that is deemed
to bias future sampling toward high quality solutions.

The pheromone update aims to concentrate the search in regions of the search space
containing high quality solutions. In particular, the reinforcement of solution components
depending on the solution quality is an important ingredient of ACO algorithms. It implicitly
assumes that good solutions consist of good solution components and thus, to learn which
components contribute to good solutions can help assembling them into better solutions. In
the following, we give a more technical description of the general ACO meta-heuristic whose
framework is shown in Algorithm 7.

ACO is an iterative algorithm whose run time is controlled by a principal while-loop as
shown in Algorithm 7. In each iteration the three algorithmic components AntBasedSolution-
Contruction(), PheromoneUpdate(), and DaemonActions() must be scheduled. In the following
we outline these three algorithmic components in detail:

AntBasedSolutionConstruction()

Artificial ants can be regarded as probabilistic constructive heuristics that assemble solutions
as sequences of solution components. The finite set of solution components C = {c1, . . . , cn}



48 CHAPTER 4. ANT COLONY OPTIMIZATION: ACO

is hereby derived from the discrete optimization problem under consideration.1 Each so-
lution construction starts with an empty sequence s = 〈〉 (i.e., with an empty solution).
Then, the current sequence s is extended at each construction step by adding a feasible
solution component from the set N (s) ⊆ C \ s.2 The specification of N (s) depends on
the solution construction mechanism.3 The choice of a solution component form N (s) (see
function ChooseFrom(N (s)) in algorithm 8) is at each construction step performed proba-
bilistically with respect to the pheromone model. In most ACO algorithms the respective
probabilities—also called the transition probabilities—are defined as follows:

p(ci | s) =
[τi]

α · [η(ci)]
β

∑

cj∈N (s)[τj ]α · [η(cj)]β
, ∀ci ∈ N (s), (4.7)

where η is an optional weighting function, that is, a function that, sometimes depending on
the current sequence, assigns at each construction step a heuristic value η(cj) to each feasible
solution component cj ∈ N (s). The values that are given by the weighting function are
commonly called the heuristic information. Furthermore, the exponents α and β are positive
parameters whose values determine the relation between pheromone information and heuristic
information. It is interesting to note that when function ChooseFrom(N (s)) in Algorithm 8 is
implemented to choose deterministically the solution component that maximizes equation 4.7
(i.e., c := argmax{η(ci)|ci ∈ N (s)}), we obtain a deterministic greedy algorithm.

This method is detailed in Algorithm 8.

PheromoneUpdate()

Different ACO variants mainly differ in the update of the pheromone values they apply. In
the following, we outline a general pheromone update rule in order to provide the basic idea.
This pheromone update rule consists of two parts. First, a pheromone evaporation, which
uniformly decreases all the pheromone values, is performed. From a practical point of view,
pheromone evaporation is needed to avoid a too rapid convergence of the algorithm toward a
sub-optimal region. It implements a useful form of forgetting pheromone paths, thus favoring
the exploration of new areas in the search space. Second, one or more solutions from the
current and/or from earlier iterations are used to increase the values of pheromone trail
parameters on solution components that are part of these solutions:

τi := (1− ρ) · τi + ρ ·
∑

{s∈Supd|ci∈s}

ws · F (s), (4.8)

for i = 1, . . . , n. Hereby, Supd denotes the set of solutions that are used for the update.
Furthermore, ρ ∈ (0, 1] is a parameter called evaporation rate, and F : S 7→ R

+ is a so-called
quality function such that

f(s) < f(s ′)⇒ F (s) ≥ F (s ′),∀s 6= s ′ ∈ S.

In other words, if the objective function value of a solution s is better than the objective
function value of a solution s ′, the quality of solution s will be at least as high as the quality

1For example, in the case of AS applied to the TSP problem (see previous section), each edge of the fully
connected input graph was considered a solution component.

2Note that for this set-operation the sequence s is regarded as an ordered set.
3In the example of TSP (see previous section) the solution construction mechanism restricted the set of

traversable edges to the ones that connected the ants’ current node to unvisited nodes.
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of solution s ′. Equation 4.8 is general enough to allow also an additional weighting of the
quality function, since ws ∈ R

+ denotes a certain weight of a solution s.
Different versions of this update rule are obtained by different specifications of Supd and by

different weight settings. In many cases, Supd is composed of some of the solutions generated
in the respective iteration (henceforth denoted by Siter), and by the best solution found since
the start of the algorithm (henceforth denoted by sbs). Solution sbs is often called the best-so-
far solution. A well-known example is the AS-update rule, that is, the update rule of AS that
we explained in Section 4.2.2. The AS-update rule, which is well-known due to the fact that
AS was the first ACO algorithm to be proposed in the literature, is obtained from update
rule (4.8) by setting

Supd := Siter and ws = 1, ∀s ∈ Supd,

that is, by using all the solutions that were generated in the respective iteration for the
pheromone update, and by setting the weight of each of these solutions to 1. An example of
a pheromone update rule that is more used in practice is the IB-update rule (where IB stands
for iteration-best). The IB-update rule is given by

Supd := {sib = argmax{F (s)|s ∈ Siter}} with wsib
= 1,

that is, by choosing only the best solution generated in the respective iteration for updating
the pheromone values. This solution, denoted by sib, is weighted by 1. The IB-update
rule introduces a much stronger bias towards the good solutions found than the AS-update
rule. However, this increases the danger of premature convergence. An even stronger bias
is introduced by the BS-update rule, where BS refers to the use of the best-so-far solution
sbs. In this case Supd is set to {sbs} and sbs is weighted by 1. In practice, ACO algorithms
that use variations of the IB-update or the BS-update rule and that additionally include
mechanisms to avoid premature convergence, achieve better results than algorithms that use
the AS-update rule. Examples are given in the following section.

DaemonActions()

Daemon actions can be used to implement centralized actions which cannot be performed by
single ants. Examples are the application of local search methods to the constructed solutions,
or the collection of global information that can be used to decide whether it is useful or not
to deposit additional pheromone to bias the search process from a non-local perspective. As
a practical example, the daemon may decide to deposit extra pheromone on the solution
components that belong to the best solution found so far.

4.3.1 ACO variants

Even though the original AS algorithm achieved encouraging results for the TSP problem,
it was found to be inferior to state-of-art algorithms for the TSP as well as for other CO
problems. Therefore, several extensions and improvements of the original AS algorithm were
introduced over the years. In the following we outline some of the ACO variants with better
results.

MAX -MINAnt System (MMAS)

One of the most successful ACO variants today is MAX -MINAnt System (MMAS) [33],
which is characterized as follows. MMAS algorithms use an explicit lower bound τmin > 0
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for the pheromone values. In addition to this lower bound, MMAS algorithms use τmax =
F (sbs)/ρ as an upper bound to the pheromone values. The value of this bound is updated
each time a new best-so-far solution sbs is found by the algorithm. MMAS algorithms also
define a convergence measure. In this work we will use

cf := 2 ·

((
∑

τi,j∈T
max{τmax − τi,j, τi,j − τmin}

|T | · (τmax − τmin)

)

− 0.5

)

(4.9)

as the convergence factor. This factor is small at the beginning of the algorithm (i.e.,when
pheromone values are between τmax and τmin) and increases during the execution of the
algorithm (i.e., when pheromone values are similar to τmax or τmin). Depending on this
convergence measure, at each iteration either the IB-update or the BS-update rule (both as
explained in the previous section) are used for updating the pheromone values. When the
convergence factor is small (at the beginning of the algorithm) the IB-update rule is used
more often, while during the run of the algorithm, due to an increase of cf , the frequency
with which the BS-update rule is used increases.

Ant Colony System (ACS)

Ant Colony System, which was introduced in [19], differs from the original AS algorithm in
more aspects than just in the pheromone update. First, instead of choosing at each step
during a solution construction the next solution component according to equation 4.7, an ar-
tificial ant chooses, with probability q0, the solution component that maximizes [τi]

α · [η(ci)]
β ,

or it performs, with probability 1 − q0, a probabilistic construction step, according to equa-
tion 4.7. This type of solution construction is called pseudo-random proportional. Second,
ACS uses the BS-update rule. Third, after each solution construction step, the following ad-
ditional pheromone update is applied to the pheromone value τi whose corresponding solution
component ci was added to the solution under construction:

τi := (1− ξ) · τi + ξ · τ0, (4.10)

where τ0 is a small positive constant such that Fmin ≥ τ0 ≥ c, Fmin := min{F (s)|s ∈ S}, and
c is the initial value of the pheromone values. In practice, the effect of this local pheromone
update is to decrease the pheromone values on the visited solution components, making in
this way these components less desirable for the following ants. This mechanism increases the
exploration of the search space within each iteration.

The Hyper-Cube Framework

One of the most recent developments is the Hyper-Cube Framework (HCF) for ACO algo-
rithms [9]. Rather than being an ACO variant, the HCF is a framework for implementing
ACO algorithms which is characterized by a pheromone update that is obtained from update
rule (4.8) by defining the weight ws of each solution in Supd to be

ws =





∑

{s∈Supd}

F (s)





−1
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Therefore, the pheromone update rule in the HCF is:

τi := (1− ρ) · τi + ρ ·
∑

{s∈Supd|ci∈s}

F (s)

(
∑

{s′∈Supd}
F (s ′))

(4.11)

This means that ACO variants such as ACS or MMAS can be implemented in the HCF.
The HCF comes with several benefits. On the practical side, this framework automatically
handles the scaling of the objective function values and limits the pheromone values to the
interval [0, 1].4

The candidate list strategy

In addition to the ACO variants outlined above, the ACO community has developed additional
algorithmic features for improving the search process performed by ACO algorithms. A
prominent example are so-called candidate list strategies. A candidate list strategy is a
mechanism to restrict the number of available choices at each solution construction step.
Usually, this restriction applies to a number of the best choices with respect to their transition
probabilities (see equation 4.7).

4.3.2 Applying ACO in a multilevel framework (ML-ACO)

Recently, the application of ACO within a general problem solving framework known as
the multilevel framework was introduced. Optimization techniques that are based on this
framework, i.e., multilevel techniques, have been in use since quite a long time, especially
in the area of multigrid methods (see [13] for an overview). More recently, they have been
brought into focus by Walshaw for the application to CO. Walshaw and co-workers applied
multilevel techniques to graph-based problems such as mesh partitioning [36], the TSP [34],
and graph coloring [35]. The basic idea of a multilevel scheme is simple. Starting from the
original problem instance, smaller and smaller problem instances are obtained by successive
coarsening until some stopping criteria are satisfied. This creates a hierarchy of problem
instance in which the problem instance of a given level is always smaller (or of equal size) to the
problem instance of the next lower level. Then, a solution is computed to the smallest problem
instance and successively transformed into a solution of the next higher level until a solution
for the original problem instance is obtained. At each level, the obtained solution might
be subject to a refinement process. This idea is illustrated with respect to the application
of ACO as refinement process in Figure 4.4. The idea behind the multi-level framework is
to solve the problem “globally” in the smallest level, while refining the obtained solution in
higher levels.

4Note that in standard ACO variants the upper bound of the pheromone values depends on the pheromone
update and on the problem instance that is tackled.
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Figure 4.4: ML-ACO: Applying ACO in the multilevel framework. The original problem
instance is P . In an iterative process this problem instance is simplified (i.e., contracted) until
the lowest level instance P n is reached. Then, an ACO algorithm (or any other optimization
technique) can be used to tackle problem P n. The obtained best solution sn is expanded into
a solution sn−1′ of the next bigger problem instance P n−1. With this solution as the first best-
so-far solution, the same ACO algorithm might be applied to tackle problem instance P n−1

resulting in a best obtained solution sn−1. This process goes on until the original problem
instance was tackled.



Chapter 5

ACO approaches to the SBH

In the previous section we have described the meta-heuristic called ACO. We have also intro-
duced some ACO variants. In this chapter we will propose two different adaptations of ACO
algorithms to solve the SBH problem. First a MAX -MIN ant system (MMAS) imple-
mented in the hyper-cube framework (HCF) is described. Using this first implementation as
a basis, we will propose some changes of the algorithm that produces an Ant Colony System
(ACS) also implemented in the HCF. Finally we will introduce a multi-level framework for
the problem based on the SM heuristic (see Section 3.5).

5.1 The objective function

Before we outline our particular ACO implementations for SBH, we first deal with an issue
concerning the objective function described in Section 2.2.1. Recall that the objective of the
SBH problem is to find a directed path p∗ in G with l(p∗) ≥ l(p) for all possible paths p
that fulfil c(p) ≤ n (see Equation 2.8). Given a feasible solution p to a problem instance, the
original objective function value l(p) is the number of oligonucleotides in p.

This objective function has many plateaus, which results in the following disadvantage
when used in a search algorithm. Let p and p′ be two solutions with l(p) = l(p′) and c(p) <
c(p′).1 Even that the objective function l(·) can not distinguish between p and p′, the intuition
is to prefer p, because the DNA sequence it induces is shorter. This implies a higher chance
for an extension of p while respecting the constraint c(p) ≤ n. Therefore, we define an indirect
objective function f(·) as follows:

f(p) > f(p′)⇔ l(p) > l(p′) or
(

l(p) = l(p′) and c(p) < c(p′)
)

(5.1)

5.2 The MMAS algorithm

Our first ACO approach is a MAX -MIN ant system (MMAS) implemented in the
hyper-cube framework (HCF). It solves the SBH problem as shown in Algorithm 9. The data
structures used by this algorithm, in addition to counters and to the pheromone model T ,
are:

• the iteration-best solution pib: the best solution generated in the current iteration by
the ants;

1Remember that c(p) denotes the length of the DNA sequence derived from p.
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Algorithm 9MMAS for the SBH problem

1: input: A graph G = (S,E), and the length of the target sequence n
2: pbs := null

3: prb := null

4: cf := 0
5: bs update := false

6: InitializePheromoneValues(T )
7: while termination conditions not satisfied do
8: for j := 1 to nf do
9: pj := ConstructForwardSolution(T )

10: end for
11: for j := nf + 1 to nf + nb do
12: pj := ConstructBackwardSolution(T )
13: end for
14: pib := argmax(f(p1), ..., f(pnf +nb

))
15: if prb = null or f(pib) > f(prb) then prb := pib

16: if pbs = null or f(pib) > f(pbs) then pbs := pib

17: ApplyPheromoneUpdate(cf ,bs update ,T ,pib,prb,pbs)
18: cf := ComputeConvergenceFactor(T )
19: if cf > 0.9999 then
20: if bs update = true then
21: ResetPheromoneValues(T )
22: prb := null

23: bs update := false

24: else
25: bs update := true

26: end if
27: end if
28: end while
29: output: DNA sequence s that is obtained from pbs

• the best-so-far solution pbs: the best solution generated since the start of the algorithm;

• the restart-best solution prb: the best solution generated since the last restart of the
algorithm;

• the convergence factor cf, 0 ≤ cf ≤ 1: a measure of how far the algorithm is from
convergence;

• the Boolean variable bs update : it becomes true when the algorithm reaches convergence
for the first time after the beginning of the algorithm or a restart.

The algorithm works as follows. First, all the variables are initialized, and the pheromone
values are set to their initial value 0.5 in procedure InitializePheromoneValues(T ). At each
iteration, first nf ants construct a solution each in procedure ConstructForwardSolution(T ),
and then nb ants construct a solution each in procedure ConstructBackwardSolution(T ). A
forward solution is constructed from left to right, and a backward solution from right to left.
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Subsequently, the value of the variables pib, prb and pbs is updated (note that, until the first
restart of the algorithm, it holds that prb ≡ pbs). Fourth, pheromone values are updated
via the ApplyPheromoneUpdate(cf , bs update , T , pib, prb, pbs) procedure. Fifth, a new value
for the convergence factor cf is computed. Depending on this value, as well as on the value
of the Boolean variable bs update , a decision on whether to restart the algorithm or not is
taken. If the algorithm is restarted, the procedure ResetPheromoneValues(T ) is applied and all
the pheromones are reset to their initial value (0.5). The algorithm is iterated until some
opportunely defined termination conditions are satisfied. Once terminated the algorithm
returns the best-so-far solution pbs. The main procedures of Algorithm 9 are now described
in detail.

ConstructForwardSolution(T )

Starting from an empty path p = 〈〉, this function constructs a path in G from left to right by
adding exactly one oligonucleotide at each construction step. This is done probabilistically
using a pheromone model T , which consists of pheromone values τs,s′ and τs,s′ for each pair
s, s′ ∈ S (s 6= s′), that is, to each directed link of G is associated a pheromone value.
Additionally, T comprises pheromone values τs0,s and τs,s0

for all s ∈ S, where s0 is a non-
existing dummy oligonucleotide. This procedure is also defined in Algorithm 10.

Given the current path p = 〈p[1], . . . , p[l(p)]〉, Ŝ = S \ {p[1], . . . , p[l(p)]} is the set of
available oligonucleotides, that is, the set of oligonucleotides that can be added to p at the
next construction step. Such a construction step is performed as follows. First, we compute
a desirability value

µp[l(p)],s := [τp[l(p)],s]
α · [ηp[l(p)],s]

β

for all s ∈ Ŝ, where

ηp[l(p)],s :=
op[l(p)],s

(l − 1)
,

α = 1 and β = 5 (β has been set to 5 in order to give a high heuristic guidance to the
algorithm at the start of the search). The values ηp[l(p)],s are called heuristic information.
They are defined such that ηp[l(p)],s ∈ [0, 1] grows with growing overlap op[l(p)],s between
the oligonucleotides p[l(p)] and s. Note that when the pheromone values are all equal, the
desirability value µp[l(p)],s is high exactly when op[l(p)],s is high. Then, we generate a so-called

restricted candidate list Ŝrcl ⊆ Ŝ with a pre-defined cardinality cls such that µp[l(p)],s ≤ µp[l(p)],u

for all s ∈ Ŝ \ Ŝrcl and u ∈ Ŝrcl. Then, with probability q ∈ [0, 1) the next oligonucleotide
p[l(p) + 1] is chosen from Ŝrcl such that

p[l(p) + 1] := arg maxs∈Ŝ{µp[l(p)],s} . (5.2)

Otherwise, the next oligonucleotide p[l(p) + 1] is chosen from Ŝrcl by roulette-wheel-selection
according to the following probabilities:

pp[l(p)],s :=
µp[l(p)],s

∑

u∈Ŝrcl µp[l(p)],u
(5.3)

Note that q (henceforth called the determinism rate) and cls are important parameters of the
algorithm.
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Algorithm 10 ConstructForwardSolution method of Algorithm 9

1: input: A graph G = (S,E), a pheromone trail T , and the length of the target sequence
n

2: Ŝ := S
3: Ŝrcl := the set of size cls of s ∈ Ŝ which maximize µ0,s

4: r := random number from [0,1]
5: prsum := 0
6: for s ∈ Ŝrcl do
7: ps0,s := µs0,s/

∑

u∈Ŝrcl µs0,u

8: prsum := prsum + ps0,s

9: if prsum ≥ r then
10: s∗ := s
11: end loop
12: end if
13: end for
14: p := 〈s∗〉
15: while c(p) < n do
16: Ŝ := Ŝ \ {s∗}
17: r := random number from [0,1]
18: if r < q then
19: s∗ := argmaxs∈Ŝ{µp[l(p)],s}
20: else
21: Ŝrcl := the set of size cls of s ∈ Ŝ which maximize µp[l(p)],s

22: r := random number from [0,1]
23: prsum := 0
24: for s ∈ Ŝrcl do
25: pp[l(p)],s := µp[l(p)],s/

∑

u∈Ŝrcl µp[l(p)],u

26: prsum := prsum + pp[l(p)],s

27: if prsum ≥ r then
28: s∗ := s
29: end loop
30: end if
31: end for
32: end if
33: Extend path p by adding s∗ to its end
34: end while
35: output: p :=Find Best Subpath(p)

The only construction step that is different is the first one, that is, when p = 〈〉. In this
case, the desirability values are computed as

µs0,s := τα
s0,s · [ηs0,s]β ∈ [0, 1]

for all s ∈ Ŝ (note that Ŝ = S when p = 〈〉). Hereby,

ηs0,s :=
l − obpre(s),s + os,bsuc(s)

2(l − 1)
, (5.4)
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Functions bpre(s) and bsuc(s) are defined in equations 3.1 and 3.2. Remember that we call
bpre(s) the best predecessor of s, that is, the oligonucleotide that has the highest overlap with
s when placed before s, and we call bsuc(s) the best successor of s. In both cases, if there is
more than one best predecessor (respectively, successor), the first one found is taken. Note
that this way of defining the heuristic information favors oligonucleotides that have a very
good “best successor”, and at the same time a bad “best predecessor”. The intuition is that
the spectrum most probably does not contain an oligonucleotide that is a good predecessor
for the first oligonucleotide of the target sequence. The constants α = 1 and β = 5 have the
same value as before.

Having defined the desirability value for the first construction step, the further procedure
concerning the derivation of the restricted candidate list Ŝrcl and the choice of one of the
oligonucleotides from Ŝrcl is the same as outlined above for standard construction steps.

Finally, the solution construction stops as soon as c(p) ≥ n, that is, when the DNA
sequence derived from the constructed path p is at least as long as the target sequence st. In
case c(p) > n, we look for the longest (in terms of the number of oligonucleotides) subpath p ′

of p such that c(p) ≤ n, and replace p by p′ (see function Find Best Subpath(p) in Section 3.1).

ConstructBackwardSolution(T )

This function works principally in the same way as function ConstructForwardSolution(T ). The
first difference is that a solution p is constructed from right to left. The second difference
is that—given a partial solution p —the desirability values are still computed as if the so-
lution construction were from left to right. For example, the desirability value of adding an
oligonucleotide s to the front of p is µs,p[1] (instead of µp[1],s). This is done such that for the
construction of a solution p the same pheromone values are used, no matter if the solution is
constructed from left to right, or from right to left.

ApplyPheromoneUpdate(cf,bs update,T ,pib,prb,pbs)

As usual for MMAS implementations in the HCF, we use at each iteration a weighted
combination of the solutions pib, prb, and pbs for updating the pheromone values. The weight
of each solution depends on the value of the convergence factor cf and on the Boolean variable
bs update . In general, the pheromone update is performed as follows:

τs,u := τs,u + ρ · (ms,u − τs,u) ,∀ τs,u ∈ T , (5.5)

where ρ ∈ (0, 1] is a constant called learning rate, and ms,u is composed as follows:

ms,u := (κib · δs,u(pib)) + (κrb · δs,u(prb)) + (κbs · δs,u(pbs)) , (5.6)

where κib is the weight of solution pib, κrb is the weight of solution prb, κbs is the weight
of solution pbs, and κib + κrb + κbs = 1. Moreover, when s 6= s0 and u 6= s0, δs,u(p) is a
function that returns 1 in case u is the direct successor of s in p, and 0 otherwise. In case
s = s0, δs0,u(p) returns 1 in case u is the first oligonucleotide in p, and 0 otherwise. In case
u = s0, δs,s0

(p) returns 1 in case s is the last oligonucleotide in p, and 0 otherwise. After
the pheromone update rule (Equation 5.5) is applied, pheromone values that exceed an upper
limit of τmax = 0.99 are set back to τmax, and pheromone values that fall below a lower limit
τmin = 0.01 are set back to τmin. This prevents the algorithm from complete convergence.
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Table 5.1: Setting of κib, κrb and κbs depending on the convergence factor cf and the Boolean
control variable bs update .

bs update = false bs update

cf < 0.7 cf ∈ [0.7, 0.9) cf ∈ [0.9, 0.95) cf ≥ 0.95 = true

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

Equation 5.6 allows to choose how to schedule the relative influence of the three solutions
used for updating pheromones. The exact schedule for the setting of the three solution weights
used byMMAS in the HCF is shown in Table 5.1. In the early stages of the search (i.e., when
cf < 0.7), only the iteration-best solution is used. Then, when the value of the convergence
factor increases (i.e., 0.7 ≤ cf < 0.9) one third of the total influence is given to the restart-
best solution, which then increases to two thirds when 0.9 ≤ cf < 0.95. Eventually, all the
influence is given to the restart-best solution (i.e., when cf ≥ 0.95). Once the value of the
convergence factor raises above 0.9999, the Boolean control variable bs update is set to true,
and all the influence is given to the best-so-far solution. Note that all these values and limits
were chosen after a careful tuning by hand.

ComputeConvergenceFactor(T )

The convergence factor cf , which is a function of the current pheromone values, is computed
as follows:

cf := 2













∑

τs,u∈T
max{τmax − τs,u, τs,u − τmin}

|T | · (τmax − τmin)






− 0.5







This formula says that when the algorithm is initialized (or reset) so that all pheromone
values are set to 0.5, then cf = 0, while when the algorithm has converged, then cf = 1. In
all other cases, cf has a value in [0, 1].

5.3 The ACS algorithm

Our second ACO approach is an Ant Colony System (ACS) implemented in the hyper-cube
framework (HCF). It solves the SBH problem as shown in Algorithm 11. This algorithm has
many parts in common with the MMAS described in previous section.

In terms of data structures—in addition to counters and the pheromone model T—, the
algorithm only uses the best-so-far solution (i.e., pbs) for updating the pheromone values.
Remember that pbs is the best solution generated by the ants since the start of the algorithm.

The general procedure of the ACS algorithm is as follows. First, all the variables are ini-
tialized, and pheromone values are set to their initial value 0.5 in procedure InitializePheromone-

Values(T ). At each iteration, first nf ants construct a solution each in procedure ConstructFor-

wardSolution(T ), and then nb ants construct a solution each in procedure ConstructBackward-

Solution(T ). After the generation of a solution pj the method ReducePheromone(T ,pj) is called
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which updates the pheromone trails according to the sequence of nodes in pj , decreas-
ing the pheromone values. Finally, the global pheromone update is performed in function
ApplyPheromoneUpdate(T ,pbs). The algorithm is iterated until some opportunely defined ter-
mination conditions are satisfied. Once terminated the algorithm returns the best-so-far
solution pbs. The main procedures of Algorithm 11 are now described in detail.

Algorithm 11 ACS for the SBH problem

1: input: A graph G = (S,E), and the length of the target sequence n
2: pbs := null

3: InitializePheromoneValues(T )
4: while termination conditions not satisfied do
5: for j := 1 to nf do
6: pj := ConstructForwardSolution(T )
7: ReducePheromone(T ,pj)
8: end for
9: for j := nf + 1 to nf + nb do

10: pj := ConstructBackwardSolution(T )
11: ReducePheromone(T ,pj)
12: end for
13: if pbs = null then
14: pbs := argmax{f(p1), ..., f(pnf +nb

)}
15: else
16: pbs := argmax{f(p1), ..., f(pnf +nb

), f(pbs)}
17: end if
18: ApplyPheromoneUpdate(T ,pbs)
19: end while
20: output: pbs

ConstructForwardSolution(T ) and ConstructBackwardSolution(T ) are the same as in the MMAS
algorithm. For their explanation we refer to previous section.

ReducePheromone(T ,pj)

This function updates the pheromone trails by decreasing the pheromone in edges used in
path pj as described in section 4.3.1. This update is applied to all τpj [i],pj [i+1], i ∈ [1, l(pj)−1]
(i.e., to all the pheromone values representing used edges of path pj), to τs0,p[0] and to τp[l(p)],s0

(i.e., the pheromone to determine the first and the last sequence):

τs,u := (1− ξ) · τs,u + ξ · τmin, (5.7)

where τmin is a small positive constant such that 0 ≤ τmin ≤ 0.5, and ξ ∈ [0, 1] is a value close
to zero. In this work we will use τmin = 0.01.

ApplyPheromoneUpdate(T ,pbs)

This method is different from theMMAS method because it only uses the best-so-far solution
to update the pheromone model. It also differs from a usual ACS pheromone update because
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it updates all the pheromone values (instead of updating only the solution components in
pbs). Therefore each value of T is updated according to the following formula:

τs,u := τs,u + ρ · (δs,u(pbs)− τs,u) , ∀τs,u ∈ T ,

where ρ ∈ (0, 1] is the learning rate. Moreover, as defined in MMAS, when s 6= s0 and
u 6= s0, δs,u(p) is a function that returns 1 in case u is the direct successor of s in p, and 0
otherwise. In case s = s0, δs0,u(p) returns 1 in case u is the first oligonucleotide in p, and 0
otherwise. In case j = s0, δs,s0

(p) returns 1 in case s is the last oligonucleotide in p, and 0
otherwise.

5.4 The multi-level framework

In section 3.5 we proposed a constructive heuristic called Sub-sequence Merger (SM) for SBH.
We will use the same idea to define a multi-level framework in which the ACO algorithms
outlined in the previous sections can be applied.

5.4.1 Instance contraction

Algorithm 12 Instance contraction

1: input: a problem instance (G = (S,E), n)
2: P ← {〈s〉 | s ∈ S}
3: stop := false

4: level := 1
5: for overlap := l − 1, . . . , 1 do
6: changed := false

7: while ∃ p, p′ ∈ P s.t. op p′ ≥ overlap & |Sbsuc(p)| = 1 & |Sbpre(p
′)| = 1 & bsuc(p) = p′

& bpre(p′) = p & not stop do
8: changed := true

9: Add path p′ to the end of path p
10: P := P \ {p′}
11: if c(p) ≥ n then
12: stop := true

13: end if
14: end while
15: if not stop and changed then
16: (Glevel, n) := GenerateProblemInstance(P )
17: level := level + 1
18: end if
19: end for
20: output: A sequence of instances (G0, n), (G1, n), . . . , (Gd, n)

The first step of a multi-level framework consists in contracting the original problem in-
stance iteratively in order to generate a sequence of smaller and smaller problem instances.
In the case of the SBH problem we use the following contraction mechanism (see also Al-
gorithm 12): At each contraction step we have given a set P of paths in G (in fact, the
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contraction starts from a set of |S| paths, each of which contains exactly one oligonucleotide
i ∈ S). A contraction step consists of merging some of these paths. Hereby, we consider only
those paths p and p′ where the last oligonucleotide of p and the first one of p′ have a fixed
overlap, which is different for each construction step; starting from the maximum l − 1 and
getting reduced step by step. In addition it is required that p′ is the unique best successor
of p, and that p is the unique best predecessor of p′. The best successor (i.e., bpre(p)) and
the best predecessor (i.e., bpre(p)) of a path p are defined in equations 3.7. Furthermore, in
Algorithm 12 Sbsuc(p) is defined as the set of best successors of p, that is,

Sbsuc(p) := {p′ ∈ P | op,p′ = op,bsuc(p)};

and Sbpre(p) is defined as the set of best predecessors of p, that is,

Sbpre(p) := {p′ ∈ P | op′,p = obpre(p),p}.

The idea of this restriction is produce possibly error free sub-sequences of the original DNA
target sequence.

Each contraction step leads to a new set of paths P from which a new (smaller) problem
instance is generated in function GenerateProblemInstance(P ). This is done by deriving from
each path p ∈ P the corresponding DNA strand (as exemplary shown in Figure 2.2(c)). This
mechanism generates a sequence (G0, n), (G1, n), . . . , (Gd, n) of smaller and smaller problem
instances, where (G0, n) ≡ (G,n). (Gd, n) denotes the smallest instances that can be obtained
Note that a solution to any of these instances can directly be seen as a solution to any of the
other instances.

In order to see how the contraction mechanism reduces the size of an instance we have
applied the method to all the instances by B lażewicz et al. [3] (for a description of the instances
see Section 3.8). We have drawn 5 box-plots in Figures 5.1 and 5.2 that represent the size
of the generated instances by the contraction algorithm. As the number of contraction steps
depends on the instance, in the x axis, we have placed the value of the variable overlap of
Algorithm 12 instead of the step; to each value x of the axis corresponds the size of the
instance Glevel in line 15 of algorithm 12 when the overlap was equal to x.

From the graphics we can draw the following conclusions. First, the size of the original
problem G0 is much bigger than the size of the first level G1. Generally, the first contraction
step produces a problem instance that is about 40% of the size of the original instance. Second,
the second contraction step does not reduce the size of the instance as much as the first step.
The size of the second level G2 is about 60% of the size of the first level G1. Third, generally
speaking, the next contraction levels do not decrease the size of the instance significantly,
specially in small size instances. As a general conclusion, we can say that each step reduces
the instance in a smaller factor than its predecessor level.

5.4.2 Application of ACO in the multi-level framework

The application of the ACO algorithm proposed in Section 5.2 in the multi-level framework
(ML-ACO) works as follows. Given the sequence I = 〈(G0, n), (G1, n), . . . , (Gd, n)〉 of problem
instances, ACO is first applied to the smallest instance (Gd, n). Subsequently, ACO is applied
in the given order to all problem instances (Gd−1, n), . . . , (G0, n). Hereby we always use
the best solution of the ACO algorithm found for an instance (Gr−1, n) as first best-so-far
solution for the application of ACO to the instance (Gr, n). As stopping condition for the
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(a) Contraction for instances of size n = 100
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(b) Contraction for instances of size n = 200
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(c) Contraction for instances of size n = 300

Figure 5.1: Size of the instances generated in every step of the contraction method for in-
stances by B lażewicz et al. [3] of size 100 to 300. For each contraction step we show the
distribution of the resulting instance size (over 40 instances).
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(a) Contraction for instances of size n = 400
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(b) Contraction for instances of size n = 500

Figure 5.2: Size of the instances generated in every step of the contraction method for in-
stances by B lażewicz et al. [3] of size 400 and 500. For each contraction step we show the
distribution of the resulting instance size (over 40 instances).
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whole procedure we use a CPU time limit. The given CPU time is distributed such that the
application of ACO to an instance (Gr, n) is always allocated a constant factor ftime ≥ 1 of
the CPU time that is allocated for the application of ACO to instance (Gr−1, n). Thus, let
tr be the amount of time allocated for the instance (Gr, n), the time allocated for instance
(Gr−1, n) will be tr−1 = tr · ftime. Due to the fact that instance (Gr−1, st) is smaller than
instance (Gr, st) it is reasonable to allocate more time to (Gr, st).

Algorithm 13 ACO in the multilevel framework

1: input: A graph G, and the length of the target sequence n
2: I := the set of instances created with algorithm 12
3: pbs := null

4: for i := d, . . . , 0 do
5: p := Apply an ACO algorithm to (Gi, n); introducing pbs as the best solution found,

until it stops
6: if f(p) > f(pbs) then
7: pbs := p
8: end if
9: end for

10: output: DNA sequence s that is obtained from pbs

For the application of ACO to an instance (Gr, st) we use two stopping conditions: (1) the
allocated CPU time, and (2) the maximum number of iterations itwb without improving the
best-so-far solution. Whenever one of the two conditions is fulfilled the application of ACO at
the corresponding level is terminated, and the application to the next level starts. Note that
the use of the second stopping condition implies that the last application of ACO (that is,
the application to the original instance (G0, st)) may use all the remaining CPU time, which
is sometimes more than the allocated CPU time. Moreover, the second stopping condition is
not used for the last application of ACO.



Chapter 6

Results of the ACO algorithms

In the last chapter we proposed some ACO implementations to solve the SBH problem.
However all these algorithms have some parameters for which we have not yet defined a
value. In this chapter we will first present various tests of the algorithms with different
configurations in order to define which values are the best for the parameters. Later we will
study the results of the algorithms with the tuned parameters.

We implemented the 3 ACO variants in ANSI C++ using GCC 3.2.2 for compiling the
software. Our experimental results were obtained on a PC with AMD64X2 4400 processor and
4 Gb of memory. We have used the instances described in Section 3.8 to tune the algorithms.
Each algorithm was applied with each configuration 10 times to each problem instance in
order to minimize the effect of randomness in the results. Furthermore, for each run we have
allocated a computation time limit to the algorithms depending on the size of the instances
(see Table 6.1).

Table 6.1: Allocated computation time limits

Size n of the instance Allocated time in seconds

109 2
209 10
309 50
409 100
509 200

When we display the results for the different executions we will use—as in Chapter 3—the
following characteristics to compare them:

• The solution quality, that is the number of oligonucleotides in the constructed paths.
Remember that the optimization objective in the SBH problem is to maximize this
value.

• The number of solved problem instances, that is, the number of instances for which a
path of maximal length could be found.1

1Remember in this context that an optimal solution to the SBH problem does not necessarily correspond
to a DNA sequence that is equal to the target sequence.
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• The similarity scores obtained by comparing the computed DNA sequence with the
DNA target sequence. We will use both average scores obtained from the Needleman-
Wunsch algorithm [29], which is an algorithm for global alignment and, in contrast, the
average scores obtained by the application of the Smith-Waterman algorithm, which is
an algorithm for local alignment. Both algorithms have been applied with the following
parameters: +1 for a match of oligonucleotides, -1 for a mismatch or a gap.

• Finally, we will display the computation time that it takes to the algorithm to solve
one instance (in seconds). We consider that the time used for the algorithm is the time
that it takes to find the best solution found (i.e., the returned solution), however, in
case that no optimal solution is found, the real execution time of the algorithm may be
higher.

6.1 The tuning

In this section we will first test different configurations for the different ACO algorithms.
These algorithms have many parameters to be tested. However, due to the exponential grow
of the number of configurations to be tested in respect to the number of parameters to be
tuned, some of the parameters have been fixed in all the executions. The value of these
parameters has been chosen after a careful tuning by hand. We don’t necessarily expect this
values to be the best possible values, but we believe them to be reasonable. In all the ACO
algorithms ρ has been set to 0.1, α to 1, and β to 5.

6.1.1 MMAS tuning

In the tuning of MMAS the parameters which have been tuned are nf and nb (i.e., the
number of forward and backward ants), cls (i.e.,the size of the restricted candidate list),
and q (the determinism rate). Table 6.2 shows the possible values assigned to each tuned
parameter.

Table 6.2: Tuning values for the MMAS algorithm

Variable value

{nf , nb} {0, 6},{3, 3},{6, 0}
cls 2, 3, 5, 10, all
q 0.0, 0.5, 0.75, 0.9, 0.95

We have tested all the possible combinations of all the parameters; therefore 75 different
configurations have been tested. Figures 6.1 to 6.5 show the results obtained in all the execu-
tions. Each of the figures shows the average results of the executions of all the configurations
for each length of the target sequence (i.e., one figure for each value of n). Each figure contains
nine matrices in three rows and three columns. Each row of matrices contains the results of
one configuration of nf , nb (i.e., the number of forward and backward ants). The first matrix
of each row (the first column of matrices) corresponds to the results of the global similarity
score obtained by comparing the target sequence st and the obtained sequence (using the
Needleman-Wunsch algorithm [29]). The second matrix corresponds to the number of solved
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instances (i.e. when l(p) is optimal). We have considered that an instance was solved when
at least in five (out of ten) trials the instance was solved. This was done in order to distin-
guish better between the configurations. The last matrix of each sub-figure corresponds to
the computation time. Each matrix contains five rows and five columns. Rows correspond
to the 5 values of the size of the candidate list (2, 3, 5, 10 and “all”2 from top to bottom)
and the columns correspond to the values of determinism q (0.0, 0.5, 0.75, 0.9 and 0.95 from
left to right). In the matrix which represents the number of solved instances, the values are
displayed for each configuration in numerical form. For an easier read, for both time and
score matrices, we have translated the values into gray scale: the best value obtained in all
configurations received gray value 1.0 (i.e., white) and the worst received gray value 0.0 (i.e,
black). All the other values received a gray value proportional to the distance between the
best value and the worst value. For example, a value in the middle between the best and the
worst would get a gray value of 0.5 (i.e., medium gray). Therefore, in the score matrix—the
first one of each sub-figure—, light grays represent high values and dark grays low values
whereas in the time matrices—the third one of each sub-figure—light grays represent low
values and dark grays high values. The numerical values of white and black can be found in
the caption of the figures.

From the results that are displayed in Figures 6.1 to 6.5 we can draw the following con-
clusions. First, the use of forward and backward ants, instead of using only ants of one type,
improves considerably the results and the running times of the algorithm. The improvement
is specially shown in the largest instances (see figure 6.5). Therefore we can consider that it
is beneficial to use forward and backward ants at the same time.

Second, lower values of cls improve the efficiency of the algorithm (see Figure 6.1). How-
ever, when cls increases, the effectivity (both concerning similarity score and number of solved
instances) tends to increase. This conclusion is not applicable to cls = “all” where the re-
sults are bad. We can conclude that increasing the size of the candidate list increases the
search space enabling to find better solutions, but causing an increase in the computation
time needed. When cls is too big, the algorithm does not converge (in the desired time), and
gets bad results.

Third, big values of q also improve the efficiency but high values of q tend to decrease
effectivity; the effect of q is contrary to the effect of cls. Therefore, a combination of big values
of q with small ones of cls decrease the execution time, but the algorithm may not find an
optimal solution. The reason of this effect is that this configuration causes ACO to converge
fast, therefore good solutions will be computed in short time. However, fast convergence
causes that many areas of the search space are not explored which may result in sub-optimal
results.

Finally, in terms of similarity score and number of solved instances, there is a region where
values are usually high. This region is formed by cls between 5 and 10, and determinism q
from 0.5 to 0.9, except for the configuration cls = 5 and q = 0.9 which we don’t consider to
be in this region. From this region the fastest configurations are cls = 5 and q = 0.75 and
cls = 10 and q = 0.9. Therefore these two configurations—with nl = 3 and nr = 3—can be
seen as the best configurations forMMAS. In the rest of the work when running theMMAS
algorithm we will use the configuration ρ = 0.1, nl = 3, nr = 3, cls = 10 and q = 0.9.

2“All” means that the candidate list is not used.
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(a) Results for 0 left ants and 6 right ants.
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(b) Results for 3 left ants and 3 right ants.
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(c) Results for 6 left ants and 0 right ants.

Figure 6.1: Results of the tuning of MMAS concerning the instances with target sequence
length n = 109. In each of the matrices the rows correspond to the 5 values of the size of
the candidate list (2, 3, 5, 10 and “all” from top to bottom) and the columns correspond to
the values of the determinism rate q (0.0, 0.5, 0.75, 0.9 and 0.95 from left to right). The first
matrix of each sub-figure shows the values of the similarity score (where 104.117 corresponds
to black color, and 108.4 to white color) the second matrix shows the number of solved
instances, and the last one shows the computation time (where 1.464 corresponds to black
color, and 0.032 corresponds to white color). Note that in the first and last matrix of each
sub-figure, light gray represents the best solutions and dark gray the worst.
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(a) Results for 0 left ants and 6 right ants.
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(b) Results for 3 left ants and 3 right ants.
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(c) Results for 6 left ants and 0 right ants.

Figure 6.2: Results of the tuning of MMAS concerning the instances with target sequence
length n = 209. In each of the matrices the rows correspond to the 5 values of the size of
the candidate list (2, 3, 5, 10 and “all” from top to bottom) and the columns correspond to
the values of the determinism rate q (0.0, 0.5, 0.75, 0.9 and 0.95 from left to right). The first
matrix of each sub-figure shows the values of the similarity score (where 177.533 corresponds
to black color, and 206.675 to white color) the second matrix shows the number of solved
instances, and the last one shows the computation time (where 8.839 corresponds to black
color, and 0.968 corresponds to white color). Note that in the first and last matrix of each
sub-figure, light gray represents the best solutions and dark gray the worst.
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(a) Results for 0 left ants and 6 right ants.
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(b) Results for 3 left ants and 3 right ants.
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(c) Results for 6 left ants and 0 right ants.

Figure 6.3: Results of the tuning of MMAS concerning the instances with target sequence
length n = 309. In each of the matrices the rows correspond to the 5 values of the size of
the candidate list (2, 3, 5, 10 and “all” from top to bottom) and the columns correspond to
the values of the determinism rate q (0.0, 0.5, 0.75, 0.9 and 0.95 from left to right). The first
matrix of each sub-figure shows the values of the similarity score (where 255.187 corresponds
to black color, and 305.64 to white color) the second matrix shows the number of solved
instances, and the last one shows the computation time (where 38.043 corresponds to black
color, and 3.604 corresponds to white color). Note that in the first and last matrix of each
sub-figure, light gray represents the best solutions and dark gray the worst.
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(a) Results for 0 left ants and 6 right ants.
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(b) Results for 3 left ants and 3 right ants.
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(c) Results for 6 left ants and 0 right ants.

Figure 6.4: Results of the tuning of MMAS concerning the instances with target sequence
length n = 409. In each of the matrices the rows correspond to the 5 values of the size of
the candidate list (2, 3, 5, 10 and “all” from top to bottom) and the columns correspond to
the values of the determinism rate q (0.0, 0.5, 0.75, 0.9 and 0.95 from left to right). The first
matrix of each sub-figure shows the values of the similarity score (where 296.748 corresponds
to black color, and 400.018 to white color) the second matrix shows the number of solved
instances, and the last one shows the computation time (where 81.233 corresponds to black
color, and 12.157 corresponds to white color). Note that in the first and last matrix of each
sub-figure, light gray represents the best solutions and dark gray the worst.
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(a) Results for 0 left ants and 6 right ants.
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(b) Results for 3 left ants and 3 right ants.
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Figure 6.5: Results of the tuning of MMAS concerning the instances with target sequence
length n = 509. In each of the matrices the rows correspond to the 5 values of the size of
the candidate list (2, 3, 5, 10 and “all” from top to bottom) and the columns correspond to
the values of the determinism rate q (0.0, 0.5, 0.75, 0.9 and 0.95 from left to right). The first
matrix of each sub-figure shows the values of the similarity score (where 307.238 corresponds
to black color, and 489.692 to white color) the second matrix shows the number of solved
instances, and the last one shows the computation time (where 170.43 corresponds to black
color, and 31.757 corresponds to white color). Note that in the first and last matrix of each
sub-figure, light gray represents the best solutions and dark gray the worst.
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6.1.2 ACS tuning

In the tuning of ACS the parameters which have been tuned are cls (i.e., the size of the
restricted candidate list), q (the determinism rate) and ξ (the rate for the reduction of
pheromone). In this tuning nf and nb have been set to 3. We have decided to use this
setting due to the results obtained during the MMAS tuning presented in the previous sec-
tion. Table 6.3 shows the possible values assigned to each considered parameter. Note that
after the tuning of MMAS we discarded some of the possible values of both cls and q.

Table 6.3: Tuning values for the ACS algorithm

Variable value

cls 3, 5, 10
q 0.5, 0.75, 0.9, 0.95
ξ 0.01, 0.05, 0.1, 0.5

We have tested all the possible combinations of all the parameters; therefore 48 different
configurations have been tested. Figure 6.6 show the results obtained by the application to
the instances of length l = 409. We have only displayed this table because results in instances
of different size l have produced similar results.

The first conclusion of the tuning is that, when comparing computation times, different
values of cls and q produce the same effect than in theMMAS algorithm: high values of cls
combined with low values of q produce high computation times, whereas low values of cls and
high values of q produce low computation times. In addition, low values of ξ result in lower
computation times, where high values of ξ produce higher computation times. In general, the
algorithm is slower than MMAS .

Second, the high number of solved instances occurs with high values of determinism q and
small values of cls. In general, low values of ξ also increase the number of solved instances.
A notable result is that the configuration q = 0.5, cls = 10 and ξ = 0.5 does not solve any of
the 200 instances.

Third, the similarity score values are, in general, quite similar in all the executions. For
example, in instances of size 309, the difference between the best score and the lowest score
is of approximately only 9 points (between 282.027 and 301.507). For this reason it is very
difficult to identify which is the best configuration in terms of the similarity scores. As a
general conclusion, due to its faster execution, and to its better results in terms of solved
instances we propose to use the configuration cls = 3, q = 0.95 and ξ = 0.01, in addition to
ρ = 0.1, nf = 3 and nb = 3, for the ACS algorithm.

6.1.3 ML-ACO tuning

The first parameter to be tuned in ML-ACO is the ACO algorithm that should be used in
each level. To decide between the two algorithms described (that is, MMAS and ACS) we
present a graphic of the results of both ACO algorithms. For a further comparison between
both algorithms we refer to the next section. Figure 6.7 shows both computation time and
global similarity score for both algorithms. In this graphics we can see that the MMAS
algorithm is better than ACS, specially when the size of the instances increases. Therefore,
we will use MMAS to be applied in the multilevel framework.
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Apart from the algorithm to be used, ML-ACO has some parameters to be tuned. These
parameters are the time factor ftime which defines how much time is allocated to each level,
and itwb which is the number of iterations that an ACO algorithm may use at a certain level
without finding a better solution (see Section 5.4.2). Table 6.4 shows the possible values
assigned to each tuned parameter.

Table 6.4: Tuning values for the ML-ACO algorithm

Variable value

ftime 1.25, 1.5, 2, 3, 5
itwb 50, 100, 500

We have tested all the possible combinations of all the parameters; therefore 15 different
configurations have been tested. Figures 6.8 and 6.9 show the results obtained in all the
executions. We have drawn 3 graphics for each of the 5 instance types from the benchmark set
by B lażewicz et al. [3]. The first one corresponds to the results concerning the global similarity
score between the target sequence st and the obtained sequence (using the Needleman-Wunsch
algorithm [29]). The second matrix corresponds to the number of solved instances (i.e. when
l(p) is optimal). The last one corresponds to the computation time. All the results have been
calculated and displayed as described in Section 6.1.1.

From the results that are displayed in figures 6.8 and 6.9 we can draw the following
conclusions. First, instances of size n = 109 are solved by all the configurations with the
same results (all of them have been solved). Therefore we will not use those graphics to make
further conclusions.

Second, the computation time of the algorithm increases when ftime decreases or when
itwb increases. Therefore longest computation times are found when ftime is low and and itwb

is high. However, in all the configurations the computation times are quite low.

Third, the results, concerning both the similarity scores and number of solved instances,
are quite similar in all the configurations and it is quite difficult to make conclusions about
the best parameters. Note that, for example, in instances of size n = 509, the difference
between the best similarity score to the lowest is approximately of only 5 points. However, as
a general result we may say that great values of itwb combined with low values of ftime tend
to generate lower number of solved instances.

Due to the similarity of the results the decision of choosing the best parameters is difficult.
The only values that are really worse, in terms of computation time, are the ones obtained
when itwb = 500. Finally we have decided to use the parameters ftime = 3 and itwb = 100 for
the ML-ACO algorithm.

6.2 Results

In this section we will evaluate the results of the 3 ACO algorithms with the parameters chosen
in the previous section. The detailed results of the executions can be found in Appendix A.
In this section we will refer to these results.
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Table 6.5: Results of MMAS for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 80.00 159.84 239.97 319.89 399.74
Solved instances 40 40 40 40 40
Average similarity score (global) 108.40 201.63 297.89 397.84 487.01
Average similarity score (local) 108.70 205.61 303.92 399.79 494.53
Average computation time (sec) 0.014 1.68 5.52 16.14 41.57

6.2.1 MMAS results

Tables A.1 to A.5 in Appendix A show the results of the executions of theMMAS algorithm
for the instances by B lażewicz et al. [3]. Additionally Table 6.5 shows the results in a compact
form. In this table we have considered that a instance was solved if it was solved in at least
one trial out of 10 trials.

From these results we may point out the following conclusions: In general, all results are
very good. Most of the instances are solved, and obtain the target sequence st; from the 200
instances, 187 are solved in at least 9 out of 10 trials. Therefore we will focus our study in
the ones that get bad results.

In most of the instances with bad results concerning the similarity score we have found
some similarities. First of all, in most of these cases we can note high standard deviations.
The reason for this may be that all the instances that cause bad results are characterized by
the existence of at least one (sub-)optimal solution pe which is very different from the desired
solution pc (the one which resembles the target sequence st). If, in the first stages of the
ACO algorithm, a path similar to pe—or pe itself— is found, the ACO algorithm will tend to
improve this path. As it is very different from the real path pc it would be difficult to find
pc due to the increase of the pheromone values on the components of pe. A particular case
of this situation occurs when pe solves the SBH problem (i.e., l(pe) = l(pc)). In this case
the algorithm will never find the target sequence because it stops. These situations occur for
example in instances 34 of size 209, 28 of size 409 or in both instances 16 and 39 of size 509.

Another notable peculiarity is found in instance 33 of size 309. This instance is solved
in all 10 trials. However, the obtained similarity scores are low. Despite bad results in the
global similarity score, the results concerning the local similarity score are not that bad (49.8
and 216.3 respectively). This result is a consequence of the deficiency of the model described
in Section 2.2.1. This error appears when a sequence of type se = s1 + s0 is created, where
the target sequence is st = s0 + s1. Solution se compared with st with a global alignment
method results in a bad score, but in local alignment it may be quite good. This result is also
shown in instance 34 of size 209.

6.2.2 ACS results

Tables A.6 to A.10 in Appendix A show the results of the executions of the ACS algorithm for
the instances by B lażewicz et al. [3]. Additionally Table 6.6 shows the results in a compact
form. In this table we have considered that a instance was solved if it was solved in at least
one out of 10 trials.
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Table 6.6: Results of ACS for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 79.97 159.54 239.47 318.67 398.56
Solved instances 40 39 40 39 36
Average similarity score (global) 108.40 198.41 297.3 368.62 444.16
Average similarity score (local) 108.70 204.21 301.01 380.73 465.47
Average computation time (sec) 0.05 1.15 10.86 34.39 81.78

Table 6.7: Results of ML-ACO for the instances by B lażewicz et al. [3].

Spectrum size 100 200 300 400 500

Average solution quality 80.00 159.91 240.00 319.78 399.86
Solved instances 40 40 40 40 39
Average similarity score (global) 108.40 206.67 294.24 394.55 499.02
Average similarity score (local) 108.70 207.66 300.88 396.87 503.6
Average computation time (sec) 0.042 0.36 0.31 3.5 7.9

From the results that are provided in these tables we can draw the following conclusions.
First, the results are, in all aspects, worse than the results of theMMAS algorithm. Second,
the standard deviations of all the measures are high, because in general, different executions of
the algorithm for the same instance get different results. This shows that the ACS algorithm
is not very robust in contrast to the MMAS algorithm; the results of the algorithm depend
a lot on the first solutions found. It is also notable that when the instance size increases the
number of solved instances decreases.

Finally, with respect to the instances thatMMAS had difficulties to solve, we do not see
any improvement by ACS.

6.2.3 ML-ACO results

Tables A.11 to A.15 in Appendix A show the results of the applications of the ML-ACO
algorithm to the instances by B lażewicz et al. [3]. Additionally Table 6.7 shows the results in
a compact form. In this table we have considered that a instance was solved if it was solved
in at least one out of 10 trials.

From the results that are displayed in these tables we can draw the following conclusions.
First, the results are, in all aspects, very good. Nearly all the instances are solved, and many
target sequence st are re-constructed; from the 200 instances, 194 are solved in at least 9 out
of 10 trials, and 193 are solved in all the trials.

Second, the standard deviations of all the measures are, in general, very low. This means
that different executions of the algorithm for the same instance get the same (or very similar)
results; therefore, ML-ACO algorithm is very robust. Notice, that the instances are either
solved in all the trials, or nearly in none.

Finally, concerning the instances that MMAS had difficulties to solve, we see an im-
provement in some of them. However, most of the instance that were not solved by MMAS
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are not solved by ML-ACO neither.
In order to study better the multilevel framework, we have drawn 5 graphics which repre-

sent in which level the best solution of a run was found. We have displayed the results for the
400 executions of each size (10 trials for each of the 40 instances). In addition we have added
to the graphic the number of the solutions that solved the model, represented by a dashed
line. When all the best solutions are solved solutions, no dashed line is drawn.

From the results that are displayed in these figures we can draw the following conclusions.
First, the multilevel strategy is quite effective, because most of the solutions are found in
levels different from the original instance G0; only about a 5% of the solutions are found in
the original instance. This explains the big advantage of ML-ACO over MMAS in terms of
computation time.

Second, when instances grow, the results tend to be found in smaller levels. For example,
in instances of size n = 209 about 70 executions where solved in the smallest step, whereas
in the instances of size n = 509 more than 200 where solved in the smallest level.

6.2.4 Comparison

In order to compare between the three ACO algorithms namely,MMAS, ACS, and ML-ACO,
we have drawn 2 graphs in Figure 6.12 which show a comparison both in terms of the global
similarity score and the computational time of the algorithms. From these graphs we can draw
the following conclusions. First, in terms of score, both MMAS and ML-ACO are better
than ACS, specially in big instances. MMAS and ML-ACO get, in general the same results
except for the instances with n = 509 where ML-ACO seems to be better. Furthermore, when
we look at the results of appendix A, we can see that the standard deviations of the score are
lower in ML-ACO than in MMAS . Therefore, ML-ACO is more robust than MMAS.

Second, the MMAS algorithm is faster than ACS. Furthermore, the application of the
multilevel strategy decreases quite a lot the execution time of the algorithm, and ML-ACO
is the fastest of the three algorithms.

Finally, in Figure 6.13 we present a comparison between the three ACO algorithms, the
constructive heuristic HSM described in Section 3.6 (which was our best construction heuris-
tic) and the best available meta-heuristic approaches from the literature, namely, the evolu-
tionary algorithms EA1 to EA3, the tabu search TS, and the hybrid tabu search with scatter
search TS/SS, all of them are cited in Section 2.3.2. In this graph we can see that the three
ACO algorithms are better than all the other heuristics except for EA2. EA2 is the only
heuristic which can be compared to ML-ACO, and in fact, gets very similar results.

6.3 Final tests

In order to evaluate more precisely the algorithms we have applied the two best ACO algo-
rithms (MMAS and ML-ACO) and the constructive heuristic HSM to some of the sequencing
instances proposed in [24]. This benchmark set consists of 100 random DNA sequences of size
100, 200,. . ., and 600. Furthermore 3 different spectra exist for each target sequence. The
difference lies in the length of the oligonucleotides. More in detail, the 3 different spectra were
generated with l = 8, l = 9 and l = 10. The spectra contain 20% of false negative errors and
20% of false positive errors (randomly generated). Therefore there are 100 instances of each
size, with 3 different spectrum sizes, which gives a total of 3600 instances. In this section we
present the results of these tests.
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Figure 6.14 contains 3 graphs, each one containing the global similarity score results for
one value of l. In these graphs, the score value is given in percent (i.e., the score value has
been divided by twice the size of the target sequence). In Figure 6.15 we have drawn 3 graphs,
one per value of l, containing the computation times of the algorithms.

From the results that are displayed in these figures we can draw the following conclusions.
First, in all the algorithms when l decreases the global similarity score also decreases and the
computation time needed increases. Therefore instances of smaller l are more difficult to solve
than instances of greater l. Second, for all sizes of l, ML-ACO is the best algorithm in terms
of score followed by MMAS . Finally, the computation time of MMAS increases when l
increases, but this result is specially remarkable in ML-ACO. When probes are of size l = 10
ML-ACO is much faster thanMMAS. However, in instances of l = 8 ML-ACO is comparable
to MMAS in computation time, and in some cases is even slower, specially in instances of
big size. From another point of view, the computation time of ML-ACO strongly decreases
when l is increased. The reason of the high computation time of ML-ACO in small sizes of
l is that, when l is small, the contraction method easily introduces errors in the generated
instances, and, it is impossible to solve the model in this level. Therefore, ML-ACO wastes
computation time by being applied to levels in which the problem cannot be solved.
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(a) Results for ξ = 0.01.

0 0 0 6
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(b) Results for ξ = 0.05.

0 0 0 3

0 0 2 14

0 0 18 24

(c) Results for ξ = 0.1.

0 0 0 18

0 0 0 26

0 0 0 30

(d) Results for ξ = 0.5.

Figure 6.6: Results of the tuning of ACS concerning the instances with target sequence
length n = 409. In each of the matices the rows correspond to the 3 values of the size of the
candidate list (3, 5 and 10 from top to bottom) and the columns correspond to the values
of the determinism rate q (0.5, 0.75, 0.9 and 0.95 from left to right). The first matrix of
each sub-figure shows the values of the similarity score (where 313.302 corresponds to black
color, and 382.795 corresponds to white color) the second matrix shows the number of solved
instances, and the last one shows the computation time (where 90.643 corresponds to black
color, and 34.294 corresponds to white color). Note that in the first and last matrix of each
sub-figure, light gray represents the best solutions and dark gray the worst.
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(b) Computation time

Figure 6.7: Comparison between the ACS and the MMAS algorithms. The comparison
concerns the instances of B lażewicz et al. [3].
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(a) Results for instances with target sequence length
109. In the score matrix 108.4 corresponds to black
color, and 108.4 to white color. In the time matrix 0.005
corresponds to black color, and 0.005 to white color.
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(b) Results for instances with target sequence length
209. In the score matrix 203.363 corresponds to black
color, and 207.065 to white color. In the time matrix
0.669 corresponds to black color, and 0.267 to white
color.

40 40 40

40 40 40

40 40 40

40 40 40

40 40 40

(c) Results for instances with target sequence length
309. In the score matrix 292.925 corresponds to black
color, and 297.877 to white color. In the time matrix
1.459 corresponds to black color, and 0.22 to white color.

Figure 6.8: Results of the tuning for instances with target sequence sizes (a) n = 109, (b) n =
209 and (c) n = 309. In each of the matrices the rows correspond to the 5 values of ftime

(1.25, 1.5, 2, 3 and 5 from bottom to top) and the columns correspond to the values of itwb

(50, 100, 500 from left to right). The first matrix of each sub-figure shows global similarity
score values, the second matrix shows the number of solved instances, and the last one shows
the computation times. Note that in the first and last matrix, light gray represents the best
solutions and dark gray the worst.
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38 38 38

38 38 38

38 39 38

38 38 38

38 39 38

(a) Results for instances with target sequence length
409. In the score matrix 392.988 corresponds to black
color, and 398.663 to white color. In the time matrix
8.372 corresponds to black color, and 3.447 to white
color.
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38 38 38

38 38 38
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(b) Results for instances with target sequence length
509. In the score matrix 496.52 corresponds to black
color, and 501.207 to white color. In the time matrix
19.668 corresponds to black color, and 7.385 to white
color.

Figure 6.9: Results of the tuning for instances with target sequence sizes (a) n = 409 and
(b) n = 509. In each of the matrices the rows correspond to the 5 values of ftime (1.25, 1.5, 2,
3 and 5 from bottom to top) and the columns correspond to the values of itwb (50, 100, 500
from left to right). The first matrix of each sub-figure shows global similarity score values, the
second matrix shows the number of solved instances, and the last one shows the computation
times. Note that in the first and last matrix, light gray represents the best solutions and dark
gray the worst.
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(a) Number of best and optimal solutions found in
each step for instances of size n = 100
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(b) Number of best and optimal solutions found
in each step for instances of size n = 200
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(c) Number of best and optimal solutions found in
each step for instances of size n = 300

Figure 6.10: Number of best and optimal solutions found in each level of the multilevel
framework
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(a) Number of best and optimal solutions found in each step
for instances of size n = 400
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(b) Number of best and optimal solutions found in each step
for instances of size n = 500

Figure 6.11: Number of best and optimal solutions found in each level of the multilevel
framework
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(a) Comparison between MMAS , ACS and ML-ACO con-
cerning the global similarity scores
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(b) Comparison between MMAS , ACS and ML-ACO con-
cerning computation times

Figure 6.12: Comparison between the MMAS , ACS and ML-ACO algorithms
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Figure 6.13: Comparison between all the existing (meta-)heuristics for the SBH problem
concerning the global similarity scores
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(a) Global similarity scores of HSM, MMAS and
ML-ACO of instances of oligonucleotide length l =
8
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(b) Global similarity scores of HSM, MMAS and
ML-ACO of instances of oligonucleotide length l =
9
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(c) Global similarity scores of HSM, MMAS and
ML-ACO of instances of oligonucleotide length l =
10

Figure 6.14: Comparison between the HSM, MMAS and ML-ACO algorithms concerning
the global similarity score.
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(a) Computation time of HSM, MMAS and ML-
ACO for instances with oligonucleotide length l =
8
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(b) Computation time of HSM, MMAS and ML-
ACO for instances with oligonucleotide length l =
9
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(c) Computation time of HSM, MMAS and ML-
ACO for instances with oligonucleotide length l =
10

Figure 6.15: Comparison between HSM, MMAS and ML-ACO concerning the computation
times.



Chapter 7

Summary

In this last chapter we present an overview of the contents of this thesis. We will start
by defining the problem. We will cite some constructive heuristics and comment on their
results. Finally we will shortly describe the Ant Colony Optimization meta-heuristic and its
application to the problem.

7.1 The problem

In this thesis we studied the Sequencing by Hybridization problem (SBH). The biological
problem consists in determining the exact structure of a DNA molecule, called DNA sequenc-
ing. Sequencing by Hybridization is a method to sequence DNA. It works roughly as follows:
the first phase of the method consists of a chemical experiment which requires a so-called
DNA array. A DNA array is a two-dimensional grid whose cells typically contain all possible
DNA strands—called probes—of equal length l. After the generation of the DNA array, the
chemical experiment is started. It consists of bringing together the DNA array with many
copies of the DNA sequence to be read, also called the DNA target sequence. Hereby, the
target sequence might react with a probe on the DNA array if and only if the probe is a
subsequence of the target sequence. After the experiment, the DNA array allows the identi-
fication of the probes that reacted with target sequences. This subset of probes is called the
spectrum. The second phase of the sequencing by hybridization technique consists in using
the spectrum to determine the unknown DNA target sequence. The reconstruction of the
original sequence consists of finding an order of the spectrum elements in which each pair of
neighboring elements overlaps on l − 1 letters (i.e., the last l − 1 letters of each probe coin-
cide with the first l − 1 letters of the next). However, the hybridization experiment usually
produces errors in the spectrum. There are two types of errors:

1. Negative errors: Some probes that should be in the spectrum (because they appear
in the target sequence) do not appear in the spectrum.

2. Positive errors: A probe of the spectrum that does not appear in the target sequence
is called a positive error.

The computational part of the hybridization experiment is to achieve the reconstruction of
the target sequence with the oligonucleotides obtained in the first phase (i.e., the spectrum).
The existence of errors in the spectrum results in strongly NP-hard combinatorial problems,
as shown by B lażewicz and Kasprzak in [7].

89
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In order to tackle the problem we focused on the optimization problem that was introduced
as a model for DNA sequencing by hybridization by B lażewicz et al. in [3]. The model is
roughly as follows: the input of the problem is a set S (spectrum) of words of equal length
l over the alphabet {A,C,G,T} (i.e., S = {{A,C,G, T}l}∗) and the length n of the original
DNA target sequence. The goal is to find a sequence of length ≤ n containing the maximal
number of elements of S.

In Section 2.2.2, we presented how this model can be studied as a graph problem. Mainly,
each oligonucleotide is represented by a node in a fully connected directed graph. Each edge
es,s′ of the graph has a weight whose value is the size of the largest sequence that is both a
suffix of s and a prefix of s′; that is the overlap between the two sequences. The objective of
SBH is to find a directed path p in the graph of maximum length such that the length of the
obtained DNA sequence is less or equal to the size of the target sequence.

Finally, in Section 2.3, we introduced the Combinatorial Optimization problems. In gen-
eral many optimization problems of practical as well as theoretical importance consist of the
search for a “best” configuration of a set of variables to achieve some goals. They seem to
divide naturally into two categories: those where solutions are encoded with real-valued vari-
ables, and those where solutions are encoded with discrete variables. Among the later ones
we find a class of problems called Combinatorial Optimization (CO) problems. According to
Papadimitriou and Steigliz [30], in CO problems, we are looking for an object from a finite—
or possibly countably infinite—set. This object is typically an integer number, a subset, a
permutation or a graph structure. For CO problems that are NP-hard, no polynomial time
algorithm exists, assuming that P 6= NP. Therefore, complete methods might need exponen-
tial time in the worst-case. Thus, the use of approximate methods to solve CO problems has
received more and more attention in the last 30 years. In approximate methods we sacrifice
the guarantee of finding optimal solutions for the sake of getting good solutions in a signif-
icantly reduced amount of time. Among basic approximate methods we usually distinguish
between constructive methods and local search methods. Constructive algorithms generate
solutions from scratch by adding—to an initially empty partial solution—components, until a
solution is complete. Local search algorithms start from some initial solution and iteratively
try to replace the current solution by a better solution in an appropriately defined neighbor-
hood of the current solution. In the last 20 years, a new kind of approximate algorithm has
emerged which basically tries to combine basic heuristic methods in higher level frameworks
aimed at efficiently and effectively exploring a search space. These methods are nowadays
commonly called meta-heuristics. This class of algorithms includes Ant Colony Optimiza-
tion (CO), Evolutionary Computation (EC) including Genetic Algorithms (GA), the Greedy
Randomized Adaptive Search Procedure (GRASP), Iterated Local Search (ILS), Simulated
Annealing (SA), and Tabu Search (TS).

7.2 First attempts to tackle the problem: constructive heuris-
tics

In Chapter 3 we presented some constructive heuristics to tackle SBH. We first presented 4
heuristics, namely LAG, SH, FB-LAG, FB-SH, based on a Look-Ahead Greedy that is proposed
in [3]. The general idea of these heuristics is to start the path construction in graph G with one
of the probes of the spectrum, and to extend this path in a step-by-step manner. Afterwards
we presented a heuristic, namely SM. The idea of this heuristic is conceptionally quite different
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to the first ones. Instead of constructing one single path, the SM heuristic starts with a set P
of |S| paths, each of which only contains exactly one oligonucleotide s ∈ S, and then merges
paths until a path of sufficient size is obtained. Finally we presented two hybrids, namely
HSM and S-HSM, of SM and FB-LAG, and SM and FB-SH respectively.

In order to test these heuristics we applied them to a set of benchmark instances for DNA
sequencing by hybridization introduced by B lażewicz et al. in [3].

The results were really good. In general terms, variations over the original LAG improved
the initial algorithm. Moreover the results of SM were clearly better than the results of
the lineal construction heuristics (LAG , FB-LAG , SH and FB-SH ). The best results were
obtained by the hybrid heuristics (both HSM and S-HSM ). When comparing between them
we saw that HSM improved over S-HSM . Even for the largest problem instances, the HSM
heuristic produced sequences with very high similarity scores. Finally we compared the results
of HSM with the best available meta-heuristic approaches from the literature. The results
where surprising: HSM was clearly better than most meta-heuristic approaches. Furthermore,
the results of HSM where—except for the problem instance of greater target sequence size—
comparable to the results of the best meta-heuristic approach.

7.3 Ant Colony Optimization: ACO

In order to create more powerful algorithms to tackle the SBH problem, we used the Ant
Colony Optimization meta-heuristic described in Chapter 4. Ant Colony Optimization is a
meta-heuristic approach proposed in [17, 20, 18]. The inspiring source of ACO is the foraging
behavior of real ants. This behavior (as described by Deneubourg et al. in [16]) enables
ants to find shortest paths between food sources and their nest. While walking from food
sources to the nest and vice versa, ants deposit a substance called pheromone on the ground.
When they decide about a direction to go, they choose with higher probability paths that
are marked by stronger pheromone concentrations. This basic behavior is the basis for a
cooperative interaction which leads to the emergence of shortest paths.

ACO algorithms are based on a parametrized probabilistic model–the pheromone model–
that is used to model the chemical pheromone trails. Artificial ants incrementally construct
solutions by adding opportunely defined solution components to a partial solution under
consideration. For doing that, artificial ants perform randomized walks on a graph whose
vertexes are the solution components and edges are the connections. Components and con-
nections can have associated a pheromone trail parameter. Furthermore, components and
connectors can have associated a heuristic value representing a priori or run time heuristic
information about the problem instance. Both pheromone and heuristic values are used by
ants to make probabilistic decisions on how to move on the construction graph; ants will
chose with higher probability connections and components whose pheromone and heuristic
values are high. Moreover, the pheromone values are generally updated by the following rule:
components and connections used by solutions of high quality (according to the problem)
increase their pheromone value.

Many variations on the original ACO meta-heuristic exist. In Chapter 4 we explained
the MAX -MIN Ant System (MMAS), the Ant Colony System (ACS), the Hyper Cube
Framework (HCF), and the Multi-level ACO (ML-ACO).
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7.4 ACO algorithms for SBH

Finally, in Chapter 5 we proposed two different adaptations of ACO algorithms to solve the
SBH problem. First a MAX -MIN ant system (MMAS) implemented in the hyper-cube
framework (HCF) was described. Using this first implementation as a basis, we proposed
some changes of the algorithm that produced an Ant Colony System (ACS) also implemented
in the HCF. Finally we introduced a multi-level framework for the problem based on the
SM heuristic (ML-ACO). Furthermore, in Chapter 6, we applied the algorithms to a set
of benchmark instances for DNA sequencing by hybridization introduced by B lażewicz et
al. in [3] to tune the parameters of these algorithms. When we compared the two pure ACO
algorithms, we saw that MMAS was better than ACS. Therefore we applied the MMAS
algorithm within the multi-level framework. The results of this final algorithm were very
good. The computation times of ML-ACO were much lower than the MMAS computation
times. Furthermore, the results of ML-ACO also improved over the results of MMAS .

When we compared the results of the three algorithms with the best available meta-
heuristic approaches from the literature we saw that the three ACO algorithms were better
than all the others except for one, namely EA2 [23]. EA2 was the only heuristic which could
be compared to ML-ACO, and in fact, got very similar results.

Finally, we applied HSM, MMAS , and ML-ACO to a set of benchmark instances for
DNA sequencing by hybridization introduced by E. R. Fernandes and C. C. Ribeiro in [24].
With these instances we confirmed that ML-ACO was the best of the three heuristics. Finally
we saw that, when the size of the oligonucleotides increases, the improvement of ML-ACO
over MMAS also increased.

7.5 Accomplished objectives

To finish this thesis we want to remark the objectives that have been accomplished:

• We have proposed high quality constructive algorithms for the SBH problem.

• We have proposed two ACO algorithms. One of them with good results.

• We have proposed a multi-level approach to the SBH and we applied our best ACO
algorithm in this framework obtaining an algorithm comparable to the best method
described in the current literature.



Appendix A

Results of the algorithms

This appendix contains detailed results of the ACO algorithms developed in this thesis.

A.1 MMAS results

Tables A.1 to A.5 show the results of the application of MMAS to all the instances by
B lażewicz et al. [3]. The results are given as averages over 10 trials and the standard desviation
in parenthesis. The first column is the number of the instance. The second one—solved—
is the number of solved instances in 10 trials (i.e, its a value from 0 to 10). The third
column—quality— provides the average solution quality. The forth and fifth columns—global
and local—provide both average global and local similarity scores (using Needleman-Wunsch
algorithm, and Smith-Waterman algorithm respectively). Finally, the sixth column—time—
provides the average computation time for solving an instance (in seconds).

A.2 ACS results

Tables A.6 to A.10 show the results of the application of ACS to all the instances by B lażewicz
et al. [3]. The results are given as averages over 10 trials and the standard desviation in
parenthesis. The first column is the number of the instance. The second one—solved—
is the number of solved instances in 10 trials (i.e, its a value from 0 to 10). The third
column—quality— provides the average solution quality. The forth and fifth columns—global
and local—provide both average global and local similarity scores (using Needleman-Wunsch
algorithm, and Smith-Waterman algorithm respectively). Finally, the sixth column—time—
provides the average computation time for solving an instance (in seconds).

A.3 ML-ACO results

Tables A.11 to A.15 show the results of the application of ML-ACO to all the instances
by B lażewicz et al. [3]. The results are given as averages over 10 trials and the standard
desviation in parenthesis. The first column is the number of the instance. The second one—
solved—is the number of solved instances in 10 trials (i.e, its a value from 0 to 10). The third
column—quality— provides the average solution quality. The forth and fifth columns—global
and local—provide both average global and local similarity scores (using Needleman-Wunsch
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Table A.1: Results of MMAS for the instances of size 109.

Instance Solved Quality Global Local Time (sec)

1 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.11 (0.06)

2 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.15 (0.09)

3 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.12 (0.05)

4 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.11 (0.05)

5 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.19 (0.12)

6 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.1 (0.05)

7 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.4 (0.36)

8 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.1 (0.04)

9 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.11 (0.06)

10 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.12 (0.06)

11 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.17 (0.06)

12 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.08 (0.03)

13 10 80.0 (0.0) 105.0 (0.0) 107.0 (0.0) 0.12 (0.06)

14 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.27 (0.15)

15 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.14 (0.05)

16 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.08 (0.05)

17 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.08 (0.05)

18 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.16 (0.07)

19 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.14 (0.09)

20 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.11 (0.05)

21 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.12 (0.06)

22 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.15 (0.07)

23 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.1 (0.05)

24 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.19 (0.04)

25 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.14 (0.05)

26 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.13 (0.08)

27 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.13 (0.06)

28 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.14 (0.04)

29 10 80.0 (0.0) 105.0 (0.0) 107.0 (0.0) 0.15 (0.08)

30 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.09 (0.08)

31 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.12 (0.04)

32 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.14 (0.06)

33 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.11 (0.05)

34 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.13 (0.05)

35 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.14 (0.07)

36 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.15 (0.06)

37 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.13 (0.05)

38 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.09 (0.06)

39 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.11 (0.07)

40 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.12 (0.06)

Summary 399 80.0 (0.05) 108.4 (1.11) 108.7 (0.56) 0.14 (0.1)
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Table A.2: Results of MMAS for the instances of size 209.

Instance Solved Quality Global Local Time (sec)

1 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 1.16 (0.25)

2 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.11 (0.28)

3 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.1 (0.38)

4 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.07 (0.2)

5 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.05 (0.41)

6 10 160.0 (0.0) 205.0 (0.0) 207.0 (0.0) 1.09 (0.26)

7 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 2.1 (2.1)

8 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.56 (0.32)

9 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.72 (0.22)

10 10 160.0 (0.0) 205.0 (0.0) 207.0 (0.0) 1.63 (0.27)

11 8 159.0 (2.83) 200.3 (27.51) 203.7 (16.76) 3.94 (2.98)

12 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.16 (0.29)

13 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.04 (0.26)

14 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.47 (0.25)

15 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.19 (0.32)

16 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.22 (0.24)

17 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.11 (0.24)

18 8 159.8 (0.42) 209.0 (0.0) 209.0 (0.0) 4.33 (3.38)

19 4 158.8 (1.14) 175.1 (41.23) 194.5 (17.45) 3.25 (1.98)

20 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 1.36 (0.41)

21 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.02 (0.25)

22 10 160.0 (0.0) 200.7 (4.35) 205.9 (1.45) 1.24 (0.2)

23 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.4 (0.51)

24 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 2.46 (2.0)

25 10 160.0 (0.0) 205.0 (0.0) 207.0 (0.0) 1.02 (0.45)

26 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.31 (0.25)

27 9 159.6 (1.26) 207.4 (5.06) 207.8 (3.79) 4.43 (2.75)

28 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 1.88 (1.49)

29 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.21 (0.24)

30 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 2.12 (2.3)

31 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.03 (0.46)

32 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 1.34 (0.24)

33 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.96 (0.21)

34 1 158.2 (0.63) 20.0 (66.41) 123.5 (30.04) 2.4 (2.13)

35 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.15 (0.27)

36 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 1.14 (0.21)

37 2 158.1 (1.1) 177.9 (48.24) 194.0 (15.52) 3.52 (2.01)

38 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.83 (0.36)

39 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 2.16 (2.05)

40 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.08 (0.29)

Summary 371 159.84 (0.71) 201.63 (33.28) 205.61 (14.95) 1.68 (1.52)
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Table A.3: Results of MMAS for the instances of size 309.

Instance Solved Quality Global Local Time (sec)

1 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.32 (0.53)

2 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.75 (0.42)

3 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 3.36 (0.73)

4 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 3.29 (1.01)

5 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.77 (3.64)

6 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.04 (0.7)

7 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.75 (3.29)

8 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 3.7 (0.78)

9 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.74 (1.12)

10 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 3.18 (0.96)

11 9 239.4 (1.9) 281.7 (86.33) 293.0 (50.6) 27.47 (18.3)

12 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.08 (0.55)

13 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.42 (0.85)

14 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 5.04 (3.1)

15 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.5 (0.88)

16 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.59 (0.8)

17 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.51 (2.91)

18 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.22 (0.9)

19 10 240.0 (0.0) 250.8 (93.71) 254.7 (87.43) 4.78 (3.27)

20 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.6 (0.84)

21 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 3.35 (0.67)

22 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.01 (0.51)

23 10 240.0 (0.0) 303.0 (0.0) 306.0 (0.0) 3.46 (0.68)

24 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.99 (0.79)

25 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 14.42 (11.09)

26 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 3.34 (0.75)

27 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.78 (3.59)

28 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 8.8 (5.64)

29 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.28 (0.78)

30 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.84 (0.64)

31 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 4.13 (0.85)

32 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 5.13 (3.24)

33 10 240.0 (0.0) 49.8 (91.07) 216.3 (32.57) 4.55 (1.45)

34 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 8.81 (7.3)

35 10 240.0 (0.0) 239.5 (69.04) 285.5 (22.66) 4.47 (1.13)

36 6 239.6 (0.52) 305.4 (2.07) 306.4 (2.07) 14.72 (15.36)

37 10 240.0 (0.0) 305.0 (0.0) 307.0 (0.0) 3.9 (0.63)

38 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 3.79 (0.88)

39 7 239.6 (0.7) 306.3 (8.54) 306.8 (6.96) 11.06 (7.78)

40 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 3.74 (0.69)

Summary 392 239.97 (0.34) 297.89 (49.49) 303.92 (23.48) 5.52 (6.39)
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Table A.4: Results of MMAS for the instances of size 409.

Instance Solved Quality Global Local Time (sec)

1 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 14.91 (8.26)

2 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 9.36 (5.77)

3 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 6.81 (1.1)

4 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 17.6 (14.76)

5 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 8.06 (2.13)

6 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 25.54 (23.09)

7 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 13.34 (12.79)

8 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 7.87 (1.0)

9 6 318.0 (3.02) 357.8 (82.44) 373.0 (58.02) 39.84 (28.23)

10 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 9.08 (1.24)

11 8 319.6 (0.84) 354.0 (115.95) 359.0 (105.41) 42.76 (24.46)

12 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 7.85 (0.71)

13 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 8.23 (1.13)

14 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 8.71 (2.94)

15 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 9.1 (1.64)

16 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 8.57 (0.98)

17 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 34.69 (25.88)

18 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 10.87 (5.47)

19 10 320.0 (0.0) 331.4 (100.18) 332.2 (99.15) 7.6 (1.34)

20 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 8.21 (1.36)

21 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 7.31 (1.02)

22 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 10.53 (7.19)

23 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 24.44 (18.41)

24 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 7.54 (0.97)

25 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 25.96 (17.15)

26 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 26.27 (21.25)

27 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 27.22 (27.95)

28 10 320.0 (0.0) 254.0 (131.68) 287.4 (103.8) 17.9 (14.96)

29 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 8.01 (0.91)

30 3 316.4 (2.76) 327.3 (56.62) 338.1 (49.29) 26.89 (23.29)

31 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 7.53 (1.64)

32 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 22.8 (14.95)

33 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 8.72 (1.61)

34 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 11.74 (7.71)

35 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 7.59 (1.28)

36 10 320.0 (0.0) 405.0 (0.0) 407.0 (0.0) 22.25 (22.74)

37 9 319.9 (0.32) 409.0 (0.0) 409.0 (0.0) 38.18 (22.01)

38 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 22.31 (16.33)

39 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 15.29 (17.51)

40 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 8.11 (1.6)

Summary 386 319.85 (0.9) 397.84 (45.66) 399.79 (38.74) 16.14 (16.65)
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Table A.5: Results of MMAS for the instances of size 509.

Instance Solved Quality Global Local Time (sec)

1 10 400.0 (0.0) 505.0 (0.0) 507.0 (0.0) 45.83 (28.35)

2 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 54.97 (48.32)

3 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 13.32 (2.0)

4 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 37.61 (35.33)

5 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 15.15 (1.81)

6 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 24.87 (14.59)

7 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 47.89 (33.96)

8 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 18.82 (9.43)

9 10 400.0 (0.0) 505.0 (0.0) 507.0 (0.0) 17.97 (11.11)

10 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 13.77 (3.44)

11 9 399.9 (0.32) 481.5 (86.96) 482.3 (84.43) 44.18 (34.74)

12 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 15.27 (2.18)

13 5 397.0 (3.16) 309.1 (216.79) 396.9 (119.26) 88.47 (68.78)

14 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 39.3 (33.81)

15 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 36.08 (22.21)

16 3 397.1 (2.51) 377.4 (114.57) 451.4 (64.73) 126.49 (52.05)

17 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 13.09 (3.08)

18 10 400.0 (0.0) 507.0 (0.0) 508.0 (0.0) 34.8 (19.99)

19 10 400.0 (0.0) 353.8 (81.8) 355.4 (80.95) 72.4 (56.72)

20 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 15.4 (2.56)

21 10 400.0 (0.0) 507.0 (0.0) 508.0 (0.0) 13.52 (2.11)

22 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 15.33 (1.55)

23 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 25.58 (14.87)

24 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 22.99 (13.65)

25 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 15.06 (1.85)

26 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 45.97 (43.83)

27 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 18.62 (8.31)

28 9 399.8 (0.63) 400.1 (128.33) 407.1 (122.08) 64.09 (60.79)

29 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 78.73 (37.81)

30 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 38.33 (31.03)

31 9 399.9 (0.32) 509.0 (0.0) 509.0 (0.0) 60.47 (40.24)

32 9 399.9 (0.32) 488.9 (63.56) 495.6 (42.37) 74.45 (74.34)

33 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 15.21 (2.03)

34 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 81.15 (32.16)

35 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 24.48 (16.88)

36 9 399.9 (0.32) 507.0 (0.0) 508.0 (0.0) 83.81 (62.44)

37 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 17.72 (8.36)

38 9 399.5 (1.58) 490.1 (59.77) 498.4 (33.52) 63.9 (51.68)

39 1 396.6 (2.01) 305.4 (198.48) 413.0 (89.28) 111.68 (43.66)

40 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 15.98 (3.83)

Summary 373 399.74 (1.1) 487.01 (77.71) 494.53 (51.01) 41.57 (43.37)
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Table A.6: Results of ACS for the instances of size 109.

Instance Solved Quality Global Local Time (sec)

1 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.03 (0.03)

2 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.04 (0.02)

3 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.02)

4 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.03 (0.01)

5 8 79.8 (0.42) 109.0 (0.0) 109.0 (0.0) 0.09 (0.05)

6 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.02 (0.02)

7 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.05 (0.04)

8 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.03 (0.02)

9 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.19 (0.52)

10 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.02)

11 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.04)

12 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.03 (0.02)

13 10 80.0 (0.0) 105.0 (0.0) 107.0 (0.0) 0.09 (0.2)

14 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.19 (0.11)

15 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.08 (0.15)

16 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.1 (0.23)

17 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.02)

18 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.04 (0.04)

19 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.04 (0.02)

20 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.06 (0.06)

21 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.02 (0.01)

22 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.03 (0.02)

23 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.02 (0.02)

24 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.04 (0.02)

25 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.13 (0.3)

26 9 79.9 (0.32) 107.0 (0.0) 108.0 (0.0) 0.03 (0.03)

27 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.02 (0.01)

28 9 79.9 (0.32) 107.0 (0.0) 108.0 (0.0) 0.09 (0.16)

29 10 80.0 (0.0) 105.0 (0.0) 107.0 (0.0) 0.04 (0.03)

30 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.03)

31 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.05 (0.04)

32 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.03 (0.03)

33 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.03)

34 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.03 (0.02)

35 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.03)

36 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.03 (0.02)

37 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.02 (0.01)

38 9 79.9 (0.32) 109.0 (0.0) 109.0 (0.0) 0.02 (0.02)

39 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.02 (0.02)

40 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.04 (0.04)

Summary 388 79.97 (0.17) 108.4 (1.11) 108.7 (0.56) 0.05 (0.12)
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Table A.7: Results of ACS for the instances of size 209.

Instance Solved Quality Global Local Time (sec)

1 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.41 (0.42)

2 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.54 (0.46)

3 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.39 (0.23)

4 7 159.7 (0.48) 209.0 (0.0) 209.0 (0.0) 0.45 (0.35)

5 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 1.89 (2.65)

6 9 159.9 (0.32) 205.0 (0.0) 207.0 (0.0) 1.4 (2.34)

7 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 1.56 (1.75)

8 7 159.7 (0.48) 209.0 (0.0) 209.0 (0.0) 1.58 (1.74)

9 5 159.4 (0.7) 209.0 (0.0) 209.0 (0.0) 3.01 (3.01)

10 8 159.8 (0.42) 205.0 (0.0) 207.0 (0.0) 0.63 (0.33)

11 8 159.6 (0.97) 209.0 (0.0) 209.0 (0.0) 0.31 (0.24)

12 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.49 (0.56)

13 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.41 (0.25)

14 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 0.85 (0.93)

15 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 0.43 (0.33)

16 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.43 (0.63)

17 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 2.0 (3.1)

18 5 158.2 (3.99) 201.2 (24.67) 206.2 (8.85) 1.41 (1.73)

19 3 157.8 (1.62) 156.0 (43.89) 186.4 (18.59) 1.48 (2.71)

20 8 159.0 (2.16) 191.2 (40.27) 202.8 (13.31) 1.81 (2.75)

21 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 0.45 (0.55)

22 10 160.0 (0.0) 200.7 (4.35) 205.9 (1.45) 1.26 (2.76)

23 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 2.48 (2.71)

24 8 159.5 (1.27) 193.2 (49.96) 199.2 (30.99) 1.72 (3.24)

25 8 159.8 (0.42) 205.0 (0.0) 207.0 (0.0) 0.5 (0.49)

26 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 1.21 (2.29)

27 4 157.5 (2.17) 199.2 (8.46) 201.8 (6.2) 0.49 (0.3)

28 8 159.8 (0.42) 209.0 (0.0) 209.0 (0.0) 0.61 (0.54)

29 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.24 (0.15)

30 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.75 (0.81)

31 8 159.8 (0.42) 209.0 (0.0) 209.0 (0.0) 2.28 (3.76)

32 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.37 (0.38)

33 9 159.9 (0.32) 207.0 (0.0) 208.0 (0.0) 0.39 (0.53)

34 3 158.1 (1.45) 80.7 (95.95) 140.6 (47.43) 3.02 (2.82)

35 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 1.44 (1.95)

36 9 159.9 (0.32) 206.6 (1.26) 207.6 (1.26) 1.05 (1.95)

37 0 156.4 (1.58) 71.0 (58.96) 161.6 (16.98) 2.32 (1.27)

38 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.73 (0.98)

39 6 158.7 (1.95) 184.5 (51.68) 195.1 (30.44) 2.73 (3.3)

40 9 159.9 (0.32) 209.0 (0.0) 209.0 (0.0) 0.38 (0.19)

Summary 324 159.54 (1.27) 198.41 (37.19) 204.21 (16.97) 1.15 (1.92)
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Table A.8: Results of ACS for the instances of size 309.

Instance Solved Quality Global Local Time (sec)

1 7 239.7 (0.48) 309.0 (0.0) 309.0 (0.0) 16.57 (16.45)

2 8 239.8 (0.42) 309.0 (0.0) 309.0 (0.0) 20.57 (14.89)

3 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 15.47 (18.6)

4 7 239.7 (0.48) 307.0 (0.0) 308.0 (0.0) 13.91 (17.02)

5 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 11.94 (17.1)

6 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 11.68 (15.12)

7 7 238.4 (3.34) 300.9 (17.12) 301.3 (16.23) 7.69 (9.06)

8 9 239.8 (0.63) 307.0 (0.0) 308.0 (0.0) 3.92 (4.7)

9 8 239.8 (0.42) 309.0 (0.0) 309.0 (0.0) 1.73 (1.83)

10 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 10.46 (16.08)

11 7 238.8 (2.57) 279.0 (85.8) 289.2 (54.4) 8.41 (9.37)

12 9 239.9 (0.32) 309.0 (0.0) 309.0 (0.0) 6.06 (8.47)

13 8 239.8 (0.42) 309.0 (0.0) 309.0 (0.0) 9.32 (11.83)

14 9 239.9 (0.32) 309.0 (0.0) 309.0 (0.0) 6.12 (9.3)

15 3 237.9 (2.02) 298.8 (16.5) 305.6 (5.5) 19.54 (15.97)

16 9 239.9 (0.32) 309.0 (0.0) 309.0 (0.0) 6.85 (8.97)

17 6 237.8 (4.16) 281.4 (71.73) 294.5 (35.55) 9.8 (13.11)

18 8 239.7 (0.67) 309.0 (0.0) 309.0 (0.0) 9.93 (15.39)

19 10 240.0 (0.0) 153.8 (81.8) 164.2 (76.32) 11.31 (14.97)

20 8 239.6 (0.84) 309.0 (0.0) 309.0 (0.0) 15.16 (18.71)

21 9 239.8 (0.63) 307.0 (0.0) 308.0 (0.0) 6.59 (10.91)

22 9 239.9 (0.32) 309.0 (0.0) 309.0 (0.0) 14.04 (19.42)

23 8 239.8 (0.42) 303.0 (0.0) 306.0 (0.0) 15.8 (15.77)

24 8 239.8 (0.42) 309.0 (0.0) 309.0 (0.0) 11.08 (13.38)

25 7 239.1 (1.91) 290.7 (57.87) 291.6 (55.02) 20.34 (17.79)

26 9 239.9 (0.32) 307.0 (0.0) 308.0 (0.0) 6.9 (9.9)

27 8 239.8 (0.42) 309.0 (0.0) 309.0 (0.0) 8.74 (10.59)

28 3 237.7 (2.36) 272.9 (67.47) 281.9 (45.91) 13.15 (13.9)

29 7 239.7 (0.48) 309.0 (0.0) 309.0 (0.0) 15.55 (16.14)

30 6 239.4 (0.97) 309.0 (0.0) 309.0 (0.0) 7.59 (11.46)

31 8 239.8 (0.42) 309.0 (0.0) 309.0 (0.0) 5.41 (8.0)

32 2 237.2 (1.99) 245.5 (78.36) 277.8 (37.66) 14.36 (11.76)

33 9 239.9 (0.32) 280.2 (91.07) 298.7 (32.57) 8.28 (13.31)

34 9 239.8 (0.63) 308.8 (0.63) 308.8 (0.63) 9.46 (11.78)

35 7 239.7 (0.48) 265.7 (63.28) 294.1 (20.77) 6.52 (9.32)

36 4 239.4 (0.52) 305.0 (2.11) 306.0 (2.11) 8.51 (11.71)

37 9 239.9 (0.32) 305.0 (0.0) 307.0 (0.0) 13.47 (15.5)

38 9 239.9 (0.32) 309.0 (0.0) 309.0 (0.0) 12.93 (17.0)

39 4 238.2 (2.1) 290.2 (43.81) 295.6 (28.58) 17.09 (18.47)

40 8 239.8 (0.42) 307.0 (0.0) 308.0 (0.0) 2.09 (3.7)

Summary 306 239.47 (1.4) 297.3 (42.62) 301.01 (31.23) 10.86 (13.72)
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Table A.9: Results of ACS for the instances of size 409.

Instance Solved Quality Global Local Time (sec)

1 3 318.3 (2.5) 392.5 (39.68) 394.8 (36.15) 56.09 (32.05)

2 7 319.5 (0.85) 407.0 (0.0) 408.0 (0.0) 32.99 (33.8)

3 7 319.6 (0.7) 409.0 (0.0) 409.0 (0.0) 16.41 (24.21)

4 5 319.0 (1.33) 399.3 (30.67) 399.6 (29.73) 19.35 (23.08)

5 7 319.6 (0.7) 409.0 (0.0) 409.0 (0.0) 38.08 (32.49)

6 9 319.9 (0.32) 409.0 (0.0) 409.0 (0.0) 36.73 (32.01)

7 6 319.3 (1.06) 409.0 (0.0) 409.0 (0.0) 19.49 (28.92)

8 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 15.77 (22.66)

9 0 313.2 (0.63) 238.4 (0.52) 286.0 (0.0) 38.59 (24.1)

10 2 317.8 (2.35) 307.7 (143.79) 366.1 (55.65) 52.66 (28.57)

11 5 317.3 (4.3) 277.1 (174.6) 316.9 (121.29) 51.79 (38.3)

12 6 319.6 (0.52) 409.0 (0.0) 409.0 (0.0) 34.02 (28.51)

13 7 319.7 (0.48) 407.0 (0.0) 408.0 (0.0) 22.35 (31.1)

14 8 319.6 (0.97) 387.7 (61.03) 389.1 (59.77) 36.37 (37.44)

15 1 317.9 (1.2) 400.0 (4.83) 405.9 (1.45) 19.34 (16.68)

16 7 319.7 (0.48) 407.0 (0.0) 408.0 (0.0) 33.89 (36.26)

17 5 318.5 (1.78) 377.4 (39.95) 387.8 (26.54) 42.46 (44.74)

18 6 319.5 (0.71) 407.0 (0.0) 408.0 (0.0) 45.24 (39.25)

19 6 319.4 (0.84) 301.5 (114.93) 305.7 (109.91) 29.81 (29.63)

20 7 319.4 (1.26) 409.0 (0.0) 409.0 (0.0) 54.5 (30.58)

21 7 319.6 (0.7) 409.0 (0.0) 409.0 (0.0) 13.06 (12.97)

22 9 319.8 (0.63) 393.9 (47.75) 393.9 (47.75) 31.06 (32.71)

23 7 319.1 (1.66) 356.4 (112.18) 367.9 (87.24) 38.7 (27.22)

24 9 319.9 (0.32) 407.0 (0.0) 408.0 (0.0) 19.08 (29.1)

25 1 316.4 (2.01) 231.7 (124.92) 288.3 (66.77) 43.2 (31.2)

26 3 314.4 (3.89) 361.3 (32.92) 370.2 (26.99) 37.08 (34.14)

27 3 316.5 (2.8) 253.0 (193.77) 347.4 (74.5) 36.03 (35.23)

28 5 318.7 (2.16) 158.0 (92.71) 225.9 (64.43) 56.63 (27.14)

29 8 319.8 (0.42) 409.0 (0.0) 409.0 (0.0) 26.71 (28.8)

30 0 313.4 (0.7) 297.6 (5.06) 315.1 (9.8) 46.43 (34.52)

31 8 319.8 (0.42) 409.0 (0.0) 409.0 (0.0) 36.69 (35.91)

32 6 318.4 (2.91) 357.5 (110.72) 378.8 (63.61) 36.2 (35.07)

33 5 319.3 (0.82) 407.0 (0.0) 408.0 (0.0) 43.83 (39.14)

34 8 319.7 (0.67) 378.4 (64.51) 379.0 (63.25) 40.2 (33.28)

35 6 319.6 (0.52) 407.0 (0.0) 408.0 (0.0) 14.54 (12.61)

36 8 319.5 (1.08) 352.8 (110.05) 371.6 (74.63) 6.51 (9.09)

37 3 317.5 (3.27) 358.6 (86.59) 367.0 (70.41) 43.27 (32.04)

38 4 319.2 (0.92) 409.0 (0.0) 409.0 (0.0) 45.2 (33.39)

39 5 319.5 (0.53) 409.0 (0.0) 409.0 (0.0) 37.66 (38.42)

40 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 23.72 (34.12)

Summary 229 318.67 (2.28) 368.62 (89.3) 380.73 (60.54) 34.29 (32.19)
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Table A.10: Results of ACS for the instances of size 509.

Instance Solved Quality Global Local Time (sec)

1 6 399.4 (0.97) 503.0 (6.32) 505.6 (4.43) 97.53 (55.83)

2 0 393.6 (0.7) 111.9 (147.63) 337.0 (71.31) 68.73 (66.42)

3 8 399.7 (0.67) 509.0 (0.0) 509.0 (0.0) 75.35 (74.67)

4 0 397.3 (2.45) 364.4 (109.29) 368.2 (104.83) 104.17 (57.06)

5 5 399.5 (0.53) 509.0 (0.0) 509.0 (0.0) 78.45 (58.1)

6 6 398.3 (4.03) 491.3 (55.97) 492.1 (53.44) 68.84 (75.28)

7 5 398.6 (2.22) 484.1 (61.38) 487.9 (54.69) 125.92 (66.82)

8 9 399.9 (0.32) 509.0 (0.0) 509.0 (0.0) 55.28 (73.15)

9 8 399.6 (0.97) 471.6 (70.41) 484.2 (48.07) 75.06 (66.37)

10 8 399.8 (0.42) 509.0 (0.0) 509.0 (0.0) 81.37 (76.03)

11 2 397.8 (3.19) 307.6 (131.84) 318.5 (123.36) 91.27 (39.89)

12 8 399.6 (0.97) 509.0 (0.0) 509.0 (0.0) 68.53 (51.26)

13 0 394.6 (2.17) 183.4 (163.5) 311.6 (81.29) 99.58 (60.93)

14 3 397.5 (2.12) 303.1 (181.4) 330.3 (155.4) 62.99 (44.46)

15 4 397.3 (3.65) 459.4 (144.27) 485.2 (66.9) 101.59 (68.9)

16 0 393.9 (4.28) 286.1 (129.85) 398.1 (81.38) 94.84 (58.89)

17 9 399.9 (0.32) 509.0 (0.0) 509.0 (0.0) 115.08 (76.99)

18 5 399.1 (1.2) 444.6 (131.55) 446.6 (129.44) 55.27 (55.45)

19 4 397.1 (5.78) 391.8 (124.56) 398.7 (119.3) 115.94 (59.45)

20 9 399.9 (0.32) 509.0 (0.0) 509.0 (0.0) 60.39 (45.79)

21 8 399.8 (0.42) 507.0 (0.0) 508.0 (0.0) 76.7 (71.6)

22 9 399.9 (0.32) 509.0 (0.0) 509.0 (0.0) 55.21 (62.92)

23 8 399.8 (0.42) 509.0 (0.0) 509.0 (0.0) 71.15 (84.07)

24 7 399.7 (0.48) 509.0 (0.0) 509.0 (0.0) 42.91 (44.73)

25 7 399.6 (0.7) 509.0 (0.0) 509.0 (0.0) 48.58 (57.28)

26 7 399.6 (0.7) 509.0 (0.0) 509.0 (0.0) 59.6 (60.43)

27 7 399.5 (0.97) 507.2 (5.69) 507.8 (3.79) 81.95 (66.91)

28 1 397.9 (1.1) 316.3 (160.69) 355.6 (127.37) 80.97 (64.44)

29 3 396.1 (5.53) 481.9 (51.36) 485.6 (45.03) 93.8 (64.79)

30 3 399.2 (0.63) 437.6 (150.52) 478.6 (64.09) 103.58 (56.87)

31 8 399.5 (1.27) 474.5 (109.1) 494.9 (44.59) 65.28 (55.88)

32 3 398.5 (1.51) 435.0 (119.37) 454.3 (74.11) 134.59 (68.93)

33 9 399.9 (0.32) 509.0 (0.0) 509.0 (0.0) 84.75 (75.99)

34 3 398.7 (1.34) 507.2 (2.9) 507.2 (2.9) 87.37 (48.32)

35 5 398.2 (2.74) 431.3 (128.56) 436.6 (119.35) 106.18 (55.39)

36 7 399.6 (0.7) 506.6 (1.26) 507.6 (1.26) 95.17 (69.16)

37 8 399.8 (0.42) 509.0 (0.0) 509.0 (0.0) 52.86 (62.93)

38 8 398.8 (3.16) 486.2 (72.1) 496.0 (41.11) 91.92 (70.39)

39 2 396.1 (2.47) 238.4 (193.77) 387.5 (86.92) 84.24 (59.32)

40 9 399.8 (0.63) 509.0 (0.0) 509.0 (0.0) 58.13 (63.83)

Summary 221 398.56 (2.63) 444.16 (132.26) 465.47 (87.94) 81.78 (63.8)
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algorithm, and Smith-Waterman algorithm respectively). Finally, the sixth column—time—
provides the average computation time for solving an instance (in seconds).
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Table A.11: Results of ML-ACO for the instances of size 109.

Instance Solved Quality Global Local Time (sec)

1 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

2 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

3 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

4 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.0 (0.01)

5 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

6 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

7 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

8 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

9 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

10 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

11 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

12 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

13 10 80.0 (0.0) 105.0 (0.0) 107.0 (0.0) 0.01 (0.01)

14 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

15 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.01 (0.01)

16 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.0 (0.01)

17 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

18 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.01 (0.01)

19 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

20 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

21 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.0)

22 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.0 (0.01)

23 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

24 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

25 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

26 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.0 (0.01)

27 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

28 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.0 (0.01)

29 10 80.0 (0.0) 105.0 (0.0) 107.0 (0.0) 0.0 (0.01)

30 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

31 10 80.0 (0.0) 107.0 (0.0) 108.0 (0.0) 0.0 (0.01)

32 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

33 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.0)

34 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

35 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.0)

36 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.0)

37 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

38 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.01)

39 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.01 (0.0)

40 10 80.0 (0.0) 109.0 (0.0) 109.0 (0.0) 0.0 (0.01)

Summary 400 80.0 (0.0) 108.4 (1.11) 108.7 (0.56) 0.0 (0.01)
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Table A.12: Results of ML-ACO for the instances of size 209.

Instance Solved Quality Global Local Time (sec)

1 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.02 (0.0)

2 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

3 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

4 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

5 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

6 10 160.0 (0.0) 205.0 (0.0) 207.0 (0.0) 0.02 (0.0)

7 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

8 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 3.6 (0.5)

9 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.1 (0.0)

10 10 160.0 (0.0) 205.0 (0.0) 207.0 (0.0) 0.07 (0.0)

11 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

12 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

13 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.01 (0.01)

14 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

15 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.01 (0.01)

16 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

17 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

18 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.03 (0.01)

19 2 158.5 (0.85) 160.8 (33.17) 180.5 (19.57) 3.63 (3.28)

20 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.02 (0.01)

21 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

22 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.02 (0.01)

23 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

24 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

25 10 160.0 (0.0) 205.0 (0.0) 207.0 (0.0) 0.02 (0.0)

26 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

27 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

28 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

29 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

30 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.01)

31 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

32 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.02 (0.01)

33 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.02 (0.0)

34 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

35 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.03 (0.0)

36 10 160.0 (0.0) 207.0 (0.0) 208.0 (0.0) 0.02 (0.01)

37 1 157.9 (0.88) 188.0 (12.94) 195.7 (7.62) 6.08 (2.53)

38 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

39 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.03 (0.02)

40 10 160.0 (0.0) 209.0 (0.0) 209.0 (0.0) 0.02 (0.0)

Summary 383 159.91 (0.44) 206.67 (9.71) 207.66 (5.78) 0.36 (1.36)
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Table A.13: Results of ML-ACO for the instances of size 309.

Instance Solved Quality Global Local Time (sec)

1 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.04 (0.01)

2 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.04 (0.01)

3 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.04 (0.0)

4 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.04 (0.0)

5 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

6 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

7 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.07 (0.02)

8 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.04 (0.0)

9 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.04 (0.01)

10 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.04 (0.01)

11 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.1 (0.06)

12 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 9.42 (1.6)

13 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

14 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.07 (0.03)

15 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

16 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 1.03 (0.21)

17 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

18 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.04 (0.01)

19 10 240.0 (0.0) 115.0 (0.0) 128.0 (0.0) 0.04 (0.0)

20 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.06 (0.01)

21 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.06 (0.01)

22 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.0)

23 10 240.0 (0.0) 303.0 (0.0) 306.0 (0.0) 0.05 (0.01)

24 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.06 (0.01)

25 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

26 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.05 (0.01)

27 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.04 (0.01)

28 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

29 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

30 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.0)

31 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.06 (0.02)

32 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

33 10 240.0 (0.0) 21.0 (0.0) 206.0 (0.0) 0.07 (0.02)

34 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

35 10 240.0 (0.0) 226.4 (67.65) 281.2 (22.21) 0.05 (0.01)

36 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.05 (0.01)

37 10 240.0 (0.0) 305.0 (0.0) 307.0 (0.0) 0.05 (0.01)

38 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.07 (0.01)

39 10 240.0 (0.0) 309.0 (0.0) 309.0 (0.0) 0.05 (0.01)

40 10 240.0 (0.0) 307.0 (0.0) 308.0 (0.0) 0.05 (0.0)

Summary 400 240.0 (0.0) 294.24 (55.5) 300.88 (32.43) 0.31 (1.49)
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Table A.14: Results of ML-ACO for the instances of size 409.

Instance Solved Quality Global Local Time (sec)

1 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.08 (0.01)

2 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.07 (0.01)

3 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.08 (0.01)

4 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 1.95 (0.15)

5 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.08 (0.01)

6 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.08 (0.01)

7 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.1 (0.02)

8 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.11 (0.04)

9 2 316.4 (2.22) 322.0 (87.51) 347.9 (62.98) 44.81 (28.06)

10 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

11 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.17 (0.07)

12 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

13 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.09 (0.01)

14 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.09 (0.01)

15 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.09 (0.01)

16 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.08 (0.0)

17 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

18 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.81 (0.08)

19 10 320.0 (0.0) 215.0 (0.0) 217.0 (0.0) 0.09 (0.0)

20 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

21 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

22 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.1 (0.01)

23 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.11 (0.01)

24 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.09 (0.01)

25 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 1.08 (0.29)

26 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.0)

27 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

28 10 320.0 (0.0) 228.5 (123.18) 267.3 (97.09) 22.79 (8.55)

29 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.0)

30 2 315.2 (2.53) 318.6 (47.64) 331.4 (40.9) 24.49 (14.88)

31 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.1 (0.01)

32 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.09 (0.0)

33 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.09 (0.0)

34 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.11 (0.01)

35 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.1 (0.01)

36 10 320.0 (0.0) 405.0 (0.0) 407.0 (0.0) 0.09 (0.01)

37 9 319.7 (0.95) 409.0 (0.0) 409.0 (0.0) 40.99 (28.27)

38 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

39 10 320.0 (0.0) 409.0 (0.0) 409.0 (0.0) 0.09 (0.01)

40 10 320.0 (0.0) 407.0 (0.0) 408.0 (0.0) 0.1 (0.01)

Summary 383 319.78 (1.06) 394.55 (50.13) 396.87 (43.18) 3.5 (12.28)
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Table A.15: Results of ML-ACO for the instances of size 509.

Instance Solved Quality Global Local Time (sec)

1 10 400.0 (0.0) 505.0 (0.0) 507.0 (0.0) 5.29 (1.2)

2 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.03)

3 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.15 (0.01)

4 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 5.75 (2.85)

5 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.02)

6 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 8.15 (1.69)

7 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.15 (0.01)

8 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.17 (0.01)

9 10 400.0 (0.0) 505.0 (0.0) 507.0 (0.0) 0.23 (0.05)

10 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.17 (0.03)

11 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

12 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

13 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.61 (0.03)

14 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.21 (0.06)

15 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 36.45 (4.55)

16 0 397.7 (0.95) 392.6 (79.14) 469.7 (26.44) 78.54 (68.81)

17 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.18 (0.02)

18 10 400.0 (0.0) 507.0 (0.0) 508.0 (0.0) 0.17 (0.03)

19 9 399.9 (0.32) 403.1 (96.58) 407.1 (96.59) 106.21 (51.33)

20 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 3.43 (0.24)

21 10 400.0 (0.0) 507.0 (0.0) 508.0 (0.0) 0.15 (0.01)

22 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

23 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

24 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.17 (0.02)

25 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.21 (0.06)

26 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.21 (0.07)

27 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.17 (0.01)

28 10 400.0 (0.0) 507.0 (0.0) 508.0 (0.0) 0.17 (0.01)

29 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.25 (0.14)

30 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

31 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

32 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.18 (0.02)

33 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.17 (0.01)

34 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

35 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 5.86 (0.68)

36 10 400.0 (0.0) 507.0 (0.0) 508.0 (0.0) 0.16 (0.01)

37 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.16 (0.01)

38 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 0.22 (0.05)

39 1 396.8 (1.81) 348.1 (170.84) 442.0 (59.24) 26.98 (56.4)

40 10 400.0 (0.0) 509.0 (0.0) 509.0 (0.0) 33.52 (2.84)

Summary 380 399.86 (0.68) 499.02 (46.7) 503.6 (26.23) 7.9 (26.42)
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